مروری بر سیستم‌ رواداری خطا برای فرمان سیمی خودرو

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، آزمایشگاه تحقیقاتی سیستمهای دینامیکی خودرو، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران

2 استادیار، آزمایشگاه تحقیقاتی سیستم‌های دینامیکی خودرو، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران، تهران

چکیده

سیستم فرمان سیمی شامل واحد کنترل الکترونیکی، موتور کمکی فرمان و سنسورهایی است که می ‌توانند با جایگزینی قطعات مکانیکی، سر و صدا، لرزش و وزن خودرو را کاهش دهند. این نوع فرمان بدلیل دارا بودن قطعات الکترونیکی شرایط حساس‌ تری را نسبت به فرمان مکانیکی دارند و این بدان معناست که باید این سیستم‌ ها تحمل ‌پذیر خطا باشند. از اجزای مهم سیستم ‌های کنترل فرمان سیمی می ‌توان به محرک‌ ها، سنسورها و میکروکنترلرها اشاره کرد. از چالش‌ های این نوع سیستم حساس بودن به عملکرد نادرست اجزای الکترونیکی (سنسورها، سیم‌کشی، برقراری جریان برق، و میکرو‌کنترلرها) می ‌باشد. هدف این مقاله، معرفی سیستم‌ های کنترل تحمل‌پذیر خطا برای جبران خطاها در سیستم فرمان سیمی می ‌باشد. از این رو ساختار کنترل تطبیقی، پیش ‌بینی مدل، کنترل دو طرفه، فرمان کمکی دیفرانسیل، تخصیص کنترل مجدد، کنترل مقاوم و ساختار متغیر مورد استفاده قرار می‌گیرد. کنترل های مذکور می ‌توانند پایداری و مقاوم بودن سیستم را نسبت به عدم قطعیت و آشفتگی ها تضمین کنند. 

کلیدواژه‌ها

موضوعات


[1] Alexander, A., and Majdanzic, D., “Design and implementation of a fault-tolerant drive-by-wire system”, Master of Science Thesis in Embedded Electronics System Design, Department of Computer Science and Engineering Chalmers University of Technology, Gothenburg, Sweden (2014).
[2] Hayama, R., Higashi, M., Kawahara, S., Nakano, S., and Kumamoto, H., "Fault-tolerant automobile steering based on diversity of steer-by-wire, braking and acceleration", Reliability Engineering & System Safety, Vol. 95, No. 1, pp. 10-17, (2010).
[3] Wang, R., and Wang. J., "Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles." IEEE Transactions on Vehicular Technology, Vol. 62. No. 3, pp. 972-985, (2012).
[4] Wada, N., Fujii, K., and Saeki, M., "Reconfigurable fault-tolerant control of a vehicle with a steer-by-wire system", The 2012 International Conference on Advanced Mechatronic Systems, IEEE, (2012).
[5] Gao, T., Yin, S., Qiu, J., Gao, H., and Kaynak, O., "A partial least squares aided intelligent model predictive control approach", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 48, No. 11, pp. 2013-2021, (2017).
[6] Zhang, J., Wang, H., Zheng, J., Cao, Z., Man, Z., Yu, M., and Chen, L., "Adaptive sliding mode-based lateral stability control of steer-by-wire vehicles with experimental validations", IEEE Transactions on Vehicular Technology, Vol. 69, No. 9, pp. 9589-9600, (2020).
[7] Wang, R., Jing, H., Hu, C., Chadli, M., and Yan, F. "Robust H∞ output-feedback yaw control for in-wheel motor driven electric vehicles with differential steering", Neurocomputing, Vol. 173 pp. 676-684, (2016).
[8] Huang, C., Naghdy, F., and Du, H., "Fault tolerant sliding mode predictive control for uncertain steer-by-wire system", IEEE transactions on cybernetics, H., Vol. 49, No. 1, pp. 261-272, (2017).
[9] Huang, C., Naghdy, F., and Du, H., "Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems", IEEE Transactions on Control Systems Technology, Vol. 26, No. 5, pp. 1810-1817, (2017).
[10] Sun, Z., Zheng, J., Man, Z., Fu, M., and Lu, R., "Nested adaptive super-twisting sliding mode control design for a vehicle steer-by-wire system", Mechanical Systems and Signal Processing, Vol. 122, pp. 658-672, (2019).
[11] He, L., Chen, G. Y., and Zheng, H. Y., "Fault tolerant control method of dual steering actuator motors for steer-by-wire system", International Journal of Automotive Technology, Vol.16, No. 6, pp. 977-987, (2015).
[12] Song, D. Y., Li, Q., Zou, F. L., and Yuan, B., "Fault-tolerant control architecture for steering-by-wire system", 2008 Second International Symposium on Intelligent Information Technology Application, Vol. 1, IEEE, (2008).
[13] Xu, F.-X., Liu, X.-H., Chen, W., Zhou, C., and Cao, B.-W., "The fractional order pid method with a fault tolerant module for road feeling control of steer-by-wire system", Mathematical Problems in Engineering, Article ID 6386513, (2018).
[14] He, L., Zong, C., Chen, S., and Wang, C., “The tri-core fault-tolerant control for electronic control unit of steer-by-wire system”, No. 2011-01-1006, SAE Technical Paper, (2011).
[15] Hu, Z., Zhang, F., and Wei, Z., "Research on fault tolerant strategy and reliability of steering-by-wire", International Journal of Modeling and Optimization, Vol. 6, No.2, pp. 106, (2016).
[16] Huang, C., Naghdy, F., and Du, H., "Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems", IEEE Transactions on Control Systems Technology, Vol. 26, No. 5, pp. 1810-1817, (2017).
 [17] Huang, C., Naghdy, F., and Du, H., "Delta operator-based model predictive control with fault compensation for steer-by-wire systems", IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2018).
[18] Huang, C., Naghdy, F., and Du, H., "Observer-based fault-tolerant controller for uncertain steer-by-wire systems using the delta operator", IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 6, pp. 2587-2598, (2018).
[19] Bian, C. T., Yin, G. D., Zhang, N., and Xu, L. W., "Fault tolerant control for steering by wire electric vehicle on the steering deadlocking condition with nonzero angle", Dynamics of vehicles on roads and tracks vol 1: Proceedings of the 25th international symposium on dynamics of vehicles on roads and tracks (iavsd 2017), 14–18 august 2017, Rockhampton, Queensland, Australia. CRC Press, (2017).
[20] Fekih, A., and Devariste, D., "A fault-tolerant steering control design for automatic path tracking in autonomous vehicles", 2013 American Control Conference, IEEE, (2013).
[21] Härkegård, O., “Backstepping and control allocation with applications to flight control”, Diss. Linköpings universitet, (2003).
[22] András, M., and Gáspár, P., "Reconfgurable fault-tolerant control of in-wheel electric vehicles with steering system failure", IFAC-Papers OnLine, Vol. 48, No. 26, pp. 49-54, (2015).
[23] Nobutaka, W., Fujii, K., and Saeki, M., "Reconfigurable fault-tolerant controller synthesis for a steer-by-wire vehicle using independently driven wheels", Vehicle system dynamics, Vol. 51, No. 9, pp. 1438-1465, (2013).
[24] Yim, S., "Fault-tolerant yaw moment control with steer—and brake-by-wire devices", International Journal of Automotive Technology, Vol. 15, No. 3 pp. 463-468, (2014).
[25] Han, Z., and Zhao, W., "Two-way H∞ control method with a fault-tolerant module for steer-by-wire system", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, No. 1, pp. 42-56, (2018).
[26] Akira, I., and Hayakawa, Y., "Practical fault-tolerant control to protect steer-by-wire systems against sensor faults", 2015 IEEE Conference on Control Applications (CCA), IEEE, (2015).
[27] Kirli, A., Okwudire, C. E., and Ulsoy, A. G., "Limitations of torque vectoring as a backup safety strategy for steer-by-wire vehicles due to vehicle stability control", Dynamic Systems and Control Conference, Vol. 58271, American Society of Mechanical Engineers, (2017).
[28] Tashiro, T., "Fault tolerant control using disturbance observer by mutual compensation of steer-by-wire and in-wheel motors", 2018 IEEE Conference on Control Technology and Applications (CCTA), IEEE, (2018).
[29] Wang, R., Jing, H., Hu, C., Chadli, M., and Yan, F., "Robust H∞ output-feedback yaw control for in-wheel motor driven electric vehicles with differential steering", Neurocomputing, Vol. 173 pp. 676-684, (2016).
[30] Wang, R., and Wang, J., "Fault-tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles", IEEE Transactions on Vehicular Technology, Vol. 60, No. 9, pp. 4276-4287, (2011).
[31] Zou, F., Song, D., Li, Q., and Yuan, B., "A new intelligent technology of steering-by-wire system by variable structure control with sliding mode", 2009 International Joint Conference on Artificial Intelligence, IEEE, (2009).
دوره 31، شماره 2 - شماره پیاپی 143
خرداد و تیر 1401
صفحه 60-67
  • تاریخ دریافت: 04 اردیبهشت 1401
  • تاریخ بازنگری: 24 خرداد 1401
  • تاریخ پذیرش: 28 خرداد 1401
  • تاریخ اولین انتشار: 28 خرداد 1401