میکروفلوییدیک بر پایه کاغذ با کاربردهای تشخیصی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 کارشناسی ارشد مهندسی پزشکی، دانشکده علوم و فنون نوین، دانشگاه تهران، ایران

2 استادیار گروه مهندسی پزشکی، دانشکده علوم و فنون نوین، دانشگاه تهران،‌ایران

چکیده

دور بودن از آزمایشگاه‌ها، هزینهٔ زیاد آزمایش‌ها، زمان‌بر بودن و نیاز به مهارت در انجام آزمایش‌ها و تشخیص سریع به‌ویژه در بیماری‌ها از جمله مشکلاتی است که باعث توجه پژوهشگران به  دستگاه‌هایی ارزان، قابل‌حمل، بدون نیاز به منبع‌های خارجی، کوچک، در دسترس و همراه با استفادهٔ آسان در زمینهٔ تشخیص شده است. در این زمینه دستگاه‌های میکروفلوییدیک بر پایهٔ کاغذ تا حد زیادی نیازهای مذکور را برآورده می‌کنند. کاغذ ماده‌ای زیست‌سازگار، کم‌هزینه همراه با فرایند ساخت آسان است. هم‌چنین امحای آن نیز راحت است. کاغذ از فیبرهای سلولزی تشکیل شده است که حرکت سیال در بستر این فیبرها با پدیده مویینگی و بدون دخالت نیروی خارجی صورت می‌گیرد. در این مقاله در مورد فیزیک میکروفلوییدیک بر پایهٔ کاغذ و معادلات حاکم بر آن، روش‌های تولید و آشکارسازی در میکروفلوییدیک بر پایهٔ کاغذ برای کاربردهای تشخیصی در حوزه زیستی و پزشکی بحث می‌شود. همچنین جدیدترین کاربردهای میکروفلوییدیک بر پایهٔ کاغذ در تشخیص‌های ادراری، اجزای خون، سرطان و بهداشت آب و غذا آورده شده است.

کلیدواژه‌ها


[1] Hua, Marti Z, Li, Shenmiao, Wang, Shuo, and Lu, Xiaonan. Detecting chemical hazards in foods using microfluidic paper-based analytical devices (µpads): The real-world application. Micromachines, 9(1):32, 2018.

[2] Almeida, M Inês GS, Jayawardane, B Manori, Kolev, Spas D, and McKelvie, Ian D. Developments of microfluidic paper-based analytical devices (ffpads) for water analysis: A review. Talanta, 177:176–190, 2018.

[3] Martin, AJP and Synge, RL Mo. A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. application to the micro-determination of the higher monoamino-acids in proteins. Biochemical Journal, 35(12):1358, 1941.

[4] Martinez, Andres W, Phillips, Scott T, Butte, Manish J, and Whitesides, George M. Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie International Edition, 46(8):1318–1320, 2007.

[5] Credou, Julie and Berthelot, Thomas. Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2(30):4767–4788, 2014.

[6] Jang, Ilhoon, Kim, Gangjune, and Song, Simon. Mathematical model for mixing in a paper-based channel and applications to the generation of a concentration gradient. International Journal of Heat and Mass Transfer, 120:830– 837, 2018.

[7] Darcy, Henry. The public fountains of the city of dijon. Victor Dalmont, Paris, France, 1856.

[8] Fu, Elain, Ramsey, Stephen A, Kauffman, Peter, Lutz, Barry, and Yager, Paul. Transport in two-dimensional paper networks. Microfluidics and nanofluidics, 10(1):29–35, 2011.

[9] Perez-Cruz, Angel, Stiharu, Ion, and DominguezGonzalez, Aurelio. Two-dimensional model of imbibition into paper-based networks using richards’ equation. Microfluidics and Nanofluidics, 21(5):98, 2017.

[10] Praticò, Filippo G and Moro, Antonino. Flow of water in rigid solids: Development and experimental validation of models for tests on asphalts. Computers & Mathematics with Applications, 55(2):235–244, 2008.

[11] Fernandes, Syrena C., Walz, Jenna A., Wilson, Daniel J., Brooks, Jessica C., and Mace, Charles R. Beyond wicking: Expanding the role of patterned paper as the foundation for an analytical platform. Analytical Chemistry, 89(11):5654–5664, 2017. PMID: 28406607.

[12] Rolland du Roscoat, Sabine, Decain, Maxime, Geindreau, Christian, Thibault, Xavier, and Bloch, Jean-Francis. Microstructural analysis of paper using synchrotron x-ray microtomography: numerical estimation of the permeability and effective thermal conductivity. Appita Journal: Journal of the Technical Association of the Australian and New Zealand Pulp and Paper Industry, 61(4):286, 2008.

[13] Ellerbee, Audrey K, Phillips, Scott T, Siegel, Adam C, Mirica, Katherine A, Martinez, Andres W, Striehl, Pierre, Jain, Nina, Prentiss, Mara, and Whitesides, George M. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Analytical chemistry, 81(20):8447–8452, 2009.

[14] Güder, Firat, Ainla, Alar, Redston, Julia, Mosadegh, Bobak, Glavan, Ana, Martin, TJ, and Whitesides, George M. Paper‐based electrical respiration sensor. Angewandte Chemie International Edition, 55(19):5727–5732, 2016.

[15] Lopez-Ruiz, Nuria, Curto, Vincenzo F, Erenas, Miguel M, Benito-Lopez, Fernando, Diamond, Dermot, Palma, Alberto J, and Capitan-Vallvey, Luis F. Smartphonebased simultaneous ph and nitrite colorimetric determination for paper microfluidic devices. Analytical chemistry, 86(19):9554–9562, 2014.

[16] Lessing, Joshua, Glavan, Ana C, Walker, S Brett, Keplinger, Christoph, Lewis, Jennifer A, and Whitesides,George M. Inkjet printing of conductive inks with high lateral resolution on omniphobic “rf paper” for paper‐based electronics and mems. Advanced Materials, 26(27):4677– 4682, 2014.

[17] Badu-Tawiah, Abraham K, Lathwal, Shefali, Kaastrup, Kaja, Al-Sayah, Mohammad, Christodouleas, Dionysios C, Smith, Barbara S, Whitesides, George M, and Sikes, Hadley D. Polymerization-based signal amplification for paper-based immunoassays. Lab on a Chip, 15(3):655–659, 2015.

[18] Carrilho, Emanuel, Martinez, Andres W, and Whitesides, George M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical chemistry, 81(16):7091–7095, 2009.

[19] Xia, Yanyan, Si, Jin, and Li, Zhiyang. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics, 77:774–789, 2016.

[20] Olkkonen, Juuso, Lehtinen, Kaisa, and Erho, Tomi. Flexographically printed fluidic structures in paper. Analytical chemistry, 82(24):10246–10250, 2010.

[21] Sones, CL, Katis, IN, He, PJW, Mills, B, Namiq, MF, Shardlow, P, Ibsen, M, and Eason, RW. Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab on a Chip, 14(23):4567–4574, 2014.

[22] Sechi, Deidre, Greer, Brady, Johnson, Jesse, and Hashemi, Nastaran. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Analytical chemistry, 85(22):10733–10737, 2013.

[23] Cate, David M, Adkins, Jaclyn A, Mettakoonpitak, Jaruwan, and Henry, Charles S. Recent developments in paper-based microfluidic devices. Analytical chemistry, 87(1):19–41, 2014.

[24] Nery, Emilia W and Kubota, Lauro T. Sensing approaches on paper-based devices: a review. Analytical and bioanalytical chemistry, 405(24):7573–7595, 2013.

[25] Funes-Huacca, Maribel, Wu, Alyson, Szepesvari, Eszter, Rajendran, Pavithra, Kwan-Wong, Nicholas, Razgulin, Andrew, Shen, Yi, Kagira, John, Campbell, Robert, and Derda, Ratmir. Portable self-contained cultures for phage and bacteria made of paper and tape. Lab on a Chip, 12(21):4269–4278, 2012.

[26] Rosa, Ana MM, Louro, A Filipa, Martins, Sofia AM, Inácio, João, Azevedo, Ana M, and Prazeres, D Miguel F. Capture and detection of dna hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and zz-domains. Analytical chemistry, 86(9):4340–4347, 2014.

[27] Akyazi, Tugce, Basabe-Desmonts, Lourdes, and BenitoLopez, Fernando. Review on microfluidic paper-based analytical devices towards commercialisation. Analytica chimica acta, 2017.

[28] Yetisen, Ali Kemal, Akram, Muhammad Safwan, and Lowe, Christopher R. based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13(12):2210–2251, 2013.

[29] Zhou, Feng, Noor, M Omair, and Krull, Ulrich J. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors. Analytical chemistry, 86(5):2719– 2726, 2014.

[30] Yang, Yuanyuan, Noviana, Eka, Nguyen, Michael P, Geiss, Brian J, Dandy, David S, and Henry, Charles S. based microfluidic devices: Emerging themes and applications. Analytical chemistry, 89(1):71–91, 2016.

[31] Wong, Sharon Y, Cabodi, Mario, Rolland, Jason, and Klapperich, Catherine M. Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid. Analytical chemistry, 86(24):11981–11985, 2014.

[32] Rohrman, Brittany and Richards-Kortum, Rebecca. Inhibition of recombinase polymerase amplification by background dna: a lateral flow-based method for enriching target dna. Analytical chemistry, 87(3):1963–1967, 2015.

[33] Toley, Bhushan J, Wang, Jessica A, Gupta, Mayuri, Buser, Joshua R, Lafleur, Lisa K, Lutz, Barry R, Fu, Elain, and Yager, Paul. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab on a Chip, 15(6):1432–1444, 2015.

[34] Magro, Laura, Escadafal, Camille, Garneret, Pierre, Jacquelin, Béatrice, Kwasiborski, Aurélia, Manuguerra, Jean-Claude, Monti, Fabrice, Sakuntabhai, Anavaj, Vanhomwegen, Jessica, and Lafaye, Pierre. Paper microfluidics for nucleic acid amplification testing (naat) of infectious diseases. Lab on a Chip, 17(14):2347–2371, 2017.

[35] Hong, Bo, Xue, Peng, Wu, Yafeng, Bao, Jingnan, Chuah, Yon Jin, and Kang, Yuejun. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomedical Microdevices, 18(1):21, 2016.

[36] Schaumburg, Federico, Urteaga, Raúl, Kler, Pablo A., and Berli, Claudio L.A. Design keys for paper-based concentration gradient generators. Journal of Chromatography A, 1561:83 – 91, 2018.

[37] Martinez, Andres W, Phillips, Scott T, and Whitesides, George M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences, 105(50):19606–19611, 2008.

[38] Fu, Lung-Ming, Tseng, Chin-Chung, Ju, Wei-Jhong, and Yang, Ruey-Jen. Rapid paper-based system for human serum creatinine detection. Inventions, 3(2):34, 2018.

[39] Schonhorn, Jeremy E, Fernandes, Syrena C, Rajaratnam, Anjali, Deraney, Rachel N, Rolland, Jason P, and Mace, Charles R. A device architecture for threedimensional, patterned paper immunoassays. Lab on a Chip, 14(24):4653–4658, 2014.

[40] Horst, Audrey L, Rosenbohm, Justin M, Kolluri, Nikunja, Hardick, Justin, Gaydos, Charlotte A, Cabodi, Mario, Klapperich, Catherine M, and Linnes, Jacqueline C. A paperfluidic platform to detect neisseria gonorrhoeae in clinical samples. Biomedical microdevices, 20(2):35, 2018.

[41] Nosrati, Reza, Gong, Max M, San Gabriel, MC, Zini, Armand, and Sinton, David. Paper-based sperm dna integrity analysis. Anal. Methods, 8:6260–6264, 2016.

[42] Matsuura, Koji, Huang, Han-Wei, Chen, Ming-Cheng, Chen, Yu, and Cheng, Chao-Min. Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Scientific Reports, 7:46213, 2017.

[43] Liu, Shuopeng, Su, Wenqiong, and Ding, Xianting. A review on microfluidic paper-based analytical devices for glucose detection. Sensors, 16(12):2086, 2016.

[44] Ortiz-Gómez, Inmaculada, Salinas-Castillo, Alfonso, García, Amalia García, Álvarez Bermejo, José Antonio, de Orbe-Payá, Ignacio, Rodríguez-Diéguez, Antonio, and Capitán-Vallvey, Luis Fermín. Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchimica Acta, 185(1):47, 2018.

[45] Yang, Ruey-Jen, Tseng, Chin-Chung, Ju, Wei-Jhong, Fu, Lung-Ming, and Syu, Meng-Ping. Integrated microfluidic paper-based system for determination of whole blood albumin. Sensors and Actuators B: Chemical, 2018.

[46] Li, H, Han, D, Pauletti, GM, and Steckl, AJ. Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab on a Chip, 14(20):4035–4041, 2014.

[47] Gong, Max M, Nosrati, Reza, San Gabriel, Maria C, Zini, Armand, and Sinton, David. Direct dna analysis with paper-based ion concentration polarization. Journal of the American Chemical Society, 137(43):13913–13919, 2015.

[48] Meneghel, Lauro, Ruffatti, Amelia, Gavasso, Sabrina, Tonello, Marta, Mattia, Elena, Spiezia, Luca, Campello, Elena, Hoxha, Ariela, Fedrigo, Marny, and Punzi, Leonardo. The clinical performance of a chemiluminescent immunoassay in detecting anti-cardiolipin and anti-ff2 glycoprotein i antibodies. a comparison with a homemade elisa method. Clinical Chemistry and Laboratory Medicine (CCLM), 53(7):1083–1089, 2015.

[49] Wang, Jie, Li, Wei, Ban, Lin, Du, Wei, Feng, Xiaojun, and Liu, Bi-Feng. A paper-based device with an adjustable time controller for the rapid determination of tumor biomarkers. Sensors and Actuators B: Chemical, 254:855–862, 2018.

[50] Chowdury, Mosfera A., Walji, Noosheen, Mahmud, Md Almostasim, and MacDonald, Brendan D. Paper-based microfluidic device with a gold nanosensor to detect arsenic contamination of groundwater in bangladesh. Micromachines, 8(3):71, Mar 2017.

[51] Ismail, Baraem P and Nielsen, S Suzanne. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern, pp. 573–597. Springer, 2017.