کنترل جریان سیال به وسیله عملگرهای مبتنی بر میدان‌های الکتریکی و مغناطیسی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، پژوهشگاه هوافضا

2 مربی، پژوهشگاه هوافضا

3 استادیار، پژوهشکده علوم و فنون هوایی، پژوهشگاه هوافضا

چکیده

در این مقاله ابتدا توضیح مختصری از مفهوم کنترل جریان سیال و نحوه دسته‌بندی روش‌های مختلف آن داده شده است. در ادامه دو دسته مهم از عملگرهای کنترل جریانی مبتنی بر میدان‌های الکتریکی و مغناطیسی معرفی و نحوه عملکرد آن‌ها توسط نیروی لورنتس توضیح داده شده است. دسته اول که به عملگرهای الکتروهیدرودینامیک مشهور هستند، صرفا تحت تأثیر میدان  الکتریکی عمل می‌کنند. این عملگرها با استفاده از تخلیه الکتریکی ولتاژ بالا توسط الکترودهای هادی جریان الکتریکی، لایه نازکی از هوای گذرنده از روی عملگر را یونیزه کرده و سپس این لایه در حضور میدان الکتریکی شتاب می‌گیرد. دسته دوم که عملگرهای مگنتوهیدرودینامیک هستند، علاوه بر میدان الکتریکی، میدان مغناطیسی نیز همزمان به جریان سیال اعمال می‌کنند. در ادامه کارایی عملگرهای مگنتوهیدرودینامیک در جریان‌های مافوق صوت برررسی و تأثیرات  آن بر اصلاح زاویه شوک، کاهش جدایش و کنترل رشد لایه مرزی بررسی شده است.

کلیدواژه‌ها


[1] Gad-el Hak, Mohamed. Flow control: passive, active, and reactive flow management. Cambridge university press, 2006.

[2] Sosa, Roberto, Moreau, Eric, Touchard, Gérard, and Artana, Guillermo. Stall control at high angle of attack with periodically excited ehd actuators. in 35th AIAA Plasmadynamics and Lasers Conference, p. 2738, 2004.

[3] Lapushkina, TA and Erofeev, AV. Supersonic flow control via plasma, electric and magnetic impacts. Aerospace Science and Technology, 69:313–320, 2017.

[۴] پورجعفرقلی, زاده, شیخ, قنبرعلی, و مداحیان. شبیه‌سازی عددی اثر هندسه و شرایط مرزی بر جریان مافوق صوت در کانال دو بعدی ام. اچ. دی. مهندسی مکانیک مدرس, 17(8), 1396.

[5] Afonin, Anton G, Butov, Vladimir G, Sinyaev, Sergey V, Solonenko, Viktor A, Shvetsov, Gennady A, and Stankevich, Sergey V. Rail electromagnetic launchers powered by pulsed MHD generators. IEEE Transactions on Plasma Science, 45(7):1208–1212, 2017.

[6] Sasaki, Yusuke, Takeshita, Shinji, Sasaki, Toru, Kikuchi, Takashi, Aso, Tsukasa, Harada, Makoto, and Harada, Nob. Numerical analysis of acceleration obtained from pulsedlinear-MHD accelerator using model rocket engine. Plasma and Fusion Research, 9:1206001–1206001, 2014.

[7] Balasubramanian, R, Anandhanarayanan, K, Krishnamurthy, R, and Chakraborty, Debasis. Magnetohydrodynamic flow control of a hypersonic cruise vehicle based on AJAX concept. Journal of Spacecraft and Rockets, pp. 759–762, 2016.

[8] Reddy, Dhanireddy R and Blankson, Isaiah. Emerging air-breathing propulsion technologies. Encyclopedia of Aerospace Engineering, 2010.

[9] Petit, Jean-Pierre, Geffray, Julien, and David, Fabrice. MHD hypersonic flow control for aerospace applications. in 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, p. 7348, 2009.

[10] Roth, J Reece and Dai, Xin. Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. in 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 1203, 2006.

[11] Joslin, Ronald D and Miller, Daniel N. Fundamentals and applications of modern flow control. American Institute of Aeronautics and Astronautics, 2009.

[12] Cheng, David Keun et al. Field and wave electromagnetics. Pearson Education India, 1989.

[13] Salmasi, Atefeh, Shadaram, Abdollah, and Taleghani, Arash Shams. Effect of plasma actuator placement on the airfoil efficiency at poststall angles of attack. IEEE Transactions on Plasma Science, 41(10):3079–3085, 2013.

[14] He, Chuan, Corke, Thomas, and Patel, Mehul. Numerical and experimental analysis of plasma flow control over a hump model. in 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 935, 2007.

[15] Lee, Donghoon and Choi, Haecheon. Magnetohydrodynamic turbulent flow in a channel at low magnetic reynolds number. Journal of Fluid Mechanics, 439:367–394, 2001.

[16] Weier, Tom, Gerbeth, Gunther, Mutschke, Gerd, Lielausis, Olgerts, and Lammers, Gerd. Control of flow separation using electromagnetic forces. Flow, Turbulence and Combustion, 71(1-4):5–17, 2003.

[17] Shatrov, V and Gerbeth, G. Magnetohydrodynamic drag reduction and its efficiency. Physics of Fluids, 19(3):035109, 2007.

[18] Cierpka, Christian, Weier, Tom, and Gerbeth, Gunter. Electromagnetic control of separated flows using periodic excitation with different wave forms. in Active Flow Control, pp. 27–41. Springer, 2007.

[19] Albrecht, Thomas, Weier, Tom, Gerbeth, Gunter, Metzkes, Hans, and Stiller, Jörg. Numerical and experimental investigation of electromagnetic separation control using different wave forms. in 5th Flow Control Conference, p. 4709, 2010.

[20] Chen, Yaohui, Fan, Baochun, Chen, Zhihua, and Li, Hongzhi. Influences of lorentz force on the hydrofoil lift. Acta Mechanica Sinica, 25(5):589–595, 2009.

[21] Moralev, Ivan, Bityurin, Valentin A, Klimov, Anatoly, and Kazanskiy, Pavel. Active flow control by means of MHD plasma actuator on a NACA 23012 airfoil model. in 53rd AIAA Aerospace Sciences Meeting, p. 0310, 2015.

[22] Posdziech, Oliver and Grundmann, Roger. Electromagnetic control of seawater flow around circular cylinders. European Journal of Mechanics-B/Fluids, 20(2):255–274, 2001.

[23] Munhoz, D, Zavershinskii, IP, Klimov, AI, Molevich, NE, Moralev, IA, Polyakov, LA, Porfiriev, DP, and Sugak, SS. Air flow control around the cylindrical rotating model by means of rotating electric arc in an external magnetic field. Procedia Engineering, 176:675–680, 2017.

[24] Anderson, John David. Modern compressible flow: With historical perspective (mcgraw-hill series in mechanical engineering). 1982. in Persian.

[25] Changbing, Su, Yinghong, Li, Bangqin, Cheng, Jian, Wang, Jun, Cao, and Yiwen, Li. MHD flow control of oblique shock waves around ramps in low-temperature supersonic flows. Chinese journal of aeronautics, 23(1):22– 32, 2010.

[26] Lin, Yurui, Zhang, Huali, and Zhou, Yi. Global smooth solutions of MHD equations with large data. Journal of Differential Equations, 261(1):102–112, 2016.

[27] Burdiak, GC, Lebedev, SV, Bland, SN, Clayson, T, Hare, J, Suttle, L, Suzuki-Vidal, F, Garcia, DC, Chittenden, JP, Bott-Suzuki, S, et al. The structure of bow shocks formed by the interaction of pulsed-power driven magnetised plasma flows with conducting obstacles. Physics of Plasmas, 24(7):072713, 2017.

[28] Balasubramanian, R, Anandhanarayanan, K, Krishnamurthy, R, and Chakraborty, Debasis. Mitigation of shockinduced flow separation using magnetohydrodynamic flow control. Sādhanā, 42(3):379–390, 2017.

[29] Su, Wei-Yi, Chang, Xin-Yu, and Zhang, Kun-Yuan. Effects of magnetohydrodynamic interaction-zone position on shock-wave/boundary-layer interaction. Journal of Propulsion and Power, 26(5):1053–1058, 2010.