تحلیل تجربی خواص سایشی یک ایمپلنت استخوانی زیست‌سازگار

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 کارشناس ارشد، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

3 دانشیار، مهندسی مواد، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

پژوهش حاضر دربرگیرندهٔ خواص سایشی آلیاژ زیست سازگار Mg-5Zn-1Y-xCa با درصدهای مختلف وزنی کلسیم است. آزمایش‌ها در محیط شبیه‌ساز بدن انسان برای بارگذاری‌های 10 تا 40 نیوتن و سرعت 30 دور بر دقیقه، در فاصله ثابت 100 متر و به روش پین بر دیسک، انجام شده است. ضریب اصطکاک و نرخ‌های سایش در 5 مرحله اندازه‌گیری و محاسبه شده و با استفاده از رسم نمودار، تصاویر میکروسکوپ الکترونی روبشی (SEM) و آنالیز (EDS)، مورد تجزیه و تحلیل قرار گرفته است. نتایج حاصل نشان‌دهندهٔ کاهش نرخ سایش و ضریب اصطکاک، به ازای افزایش بارگذاری، در کلیه آلیاژهای مورد بررسی بود. افزایش در محتوای کلسیم نیز کاهش خواص سایشی را نشان داد و مکانیزم سایشی غالب رخ داده در اکثر نمونه‌ها، خراشان بود. نمونه آلیاژ فاقد کلسیم، کمترین مقدار ضریب اصطکاک را برای بیشترین بارگذاری نشان داد، در‌حالی‌که در کمترین بارگذاری، آلیاژ حاوی بیشترین مقدار کلسیم، بیشترین ضریب اصطکاک را به خود اختصاص داد. علاوه بر این، کلیه مقادیر نرخ سایش، بین 0.00019 و 0.00057 میلی‌متر مربع قرار گرفت و برای هر دو فاکتور ضریب اصطکاک و نرخ سایش، بارگذاری 40 نیوتن نمودارهای یکنواخت‌تری را نشان داد.

کلیدواژه‌ها


[1] Koleini, Shahriar, Idris, Mohd Hasbullah, and Jafari, Hassan. Influence of hot rolling parameters on microstructure and biodegradability of Mg−1Ca alloy in simulated body fluid. Materials & Design, 33:20–25, 2012.

[2] Zeng, Rongchang, Dietzel, Wolfgang, Witte, Frank, Hort, Norbert, and Blawert, Carsten. Progress and challenge for magnesium alloys as biomaterials. Advanced engineering materials, 10(8):B3–B14, 2008.

[3] Zheng, YF, Gu, XN, and Witte, F. Biodegradable metals. Materials Science and Engineering: R: Reports, 77:1–34, 2014.

[4] Staiger, Mark P, Pietak, Alexis M, Huadmai, Jerawala, and Dias, George. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27(9):1728–1734, 2006.

[5] Chen, Yongjun, Xu, Zhigang, Smith, Christopher, and Sankar, Jag. Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia, 10(11):4561–4573, 2014.

[6] Okuma, Toshitada. Magnesium and bone strength., 2001.

[7] Mani, Gopinath, Feldman, Marc D, Patel, Devang, and Agrawal, C Mauli. Coronary stents: a materials perspective. Biomaterials, 28(9):1689–1710, 2007.

[8] Qin, Fengxiang, Xie, Guoqiang, Dan, Zhenhua, Zhu, Shengli, and Seki, Ichiro. Corrosion behavior and mechanical properties of Mg−Zn−Ca amorphous alloys. Intermetallics, 42:9–13, 2013.

[9] Vormann, Jürgen. Magnesium: nutrition and metabolism. Molecular aspects of medicine, 24(1-3):27–37, 2003.

[10] Ilich, Jasminka Z and Kerstetter, Jane E. Nutrition in bone health revisited: a story beyond calcium. Journal of the American College of Nutrition, 19(6):715–737, 2000.

[11] Witte, Frank, Kaese, V, Haferkamp, H, Switzer, E, MeyerLindenberg, A, Wirth, CJ, and Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17):3557–3563, 2005.

[12] Gu, Xuenan, Zheng, Yufeng, Cheng, Yan, Zhong, Shengping, and Xi, Tingfei. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 30(4):484– 498, 2009.

[13] Li, Nan and Zheng, Yufeng. Novel magnesium alloys developed for biomedical application: a review. Journal of Materials Science & Technology, 29(6):489–502, 2013.

[14] Zhang, Baoping, Hou, Yunlong, Wang, Xiaodan, Wang, Yin, and Geng, Lin. Mechanical properties, degradation performance and cytotoxicity of Mg−Zn−Ca biomedical alloys with different compositions. Materials Science and Engineering: C, 31(8):1667–1673, 2011.

[15] Erbel, Raimund, Di Mario, Carlo, Bartunek, Jozef, Bonnier, Johann, de Bruyne, Bernard, Eberli, Franz R, Erne, Paul, Haude, Michael, Heublein, Bernd, Horrigan, Mark, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, nonrandomised multicentre trial. The Lancet, 369(9576):1869– 1875, 2007.

[16] Smola, Bohumil, Joska, Luděk, Březina, Vítězslav, Stulíková, Ivana, and Hnilica, František. Microstructure, corrosion resistance and cytocompatibility of Mg−5Y−4Rare Earth−0.5Zr (WE54) alloy. Materials Science and Engineering: C, 32(4):659–664, 2012.

[17] Jafari, H, Rahimi, F, Sheikhsofla, Z, and Khalilnezhad, M. Effect of minor yttrium on microstructure and mechanical properties of bioimplant Mg−5Zn alloy. Journal of Materials Engineering and Performance, 26(11):5590–5598, 2017.

[18] Avedesian, Michael M, Baker, Hugh, et al. ASM specialty handbook: magnesium and magnesium alloys. ASM international, 1999.

[19] Zhang, Shaoxiang, Zhang, Xiaonong, Zhao, Changli, Li, Jianan, Song, Yang, Xie, Chaoying, Tao, Hairong, Zhang, Yan, He, Yaohua, Jiang, Yao, et al. Research on an Mg−Zn alloy as a degradable biomaterial. Acta biomaterialia, 6(2):626–640, 2010.

[20] Mohammadi, F Doost and Jafari, H. Microstructure characterization and effect of extrusion temperature on biodegradation behavior of Mg−5Zn−1Y−x Ca alloy. Transactions of Nonferrous Metals Society of China, 28(11):2199–2213, 2018.

[21] Wei, LY, Dunlop, GL, and Westengen, H. Precipitation hardening of Mg−Zn and Mg−Zn−Re alloys. Metallurgical and Materials Transactions A, 26(7):1705–1716, 1995.

[22] Sun, Yu, Zhang, Baoping, Wang, Yin, Geng, Lin, and Jiao, Xiaohui. Preparation and characterization of a new biomedical Mg−Zn−Ca alloy. Materials & Design, 34:58– 64, 2012.

[23] Jang, Yongseok, Tan, Zongqing, Jurey, Chris, Xu, Zhigang, Dong, Zhongyun, Collins, Boyce, Yun, Yeoheung, and Sankar, Jagannathan. Understanding corrosion behavior of Mg−Zn−Ca alloys from subcutaneous mouse model: Effect of Zn element concentration and plasma electrolytic oxidation. Materials Science and Engineering: C, 48:28– 40, 2015.

[24] Neubert, V, Stulíková, I, Smola, B, Mordike, BL, Vlach, M, Bakkar, A, and Pelcová, J. Thermal stability and corrosion behaviour of Mg−Y−Nd and Mg−Tb−Nd alloys. Materials Science and Engineering: A, 462(1-2):329–333, 2007.

[25] Bae, DongHyun, Kim, SH, Kim, Do Hyang, and Kim, WT. Deformation behavior of Mg−Zn−Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 50(9):2343–2356, 2002.

[26] Zhang, Erlin, He, Weiwei, Du, Hui, and Yang, Ke. Microstructure, mechanical properties and corrosion properties of Mg−Zn−Y alloys with low Zn content. Materials Science and Engineering: A, 488(1-2):102–111, 2008.

[27] Xie, GM, Ma, ZY, Geng, Lin, and Chen, RS. Microstructural evolution and mechanical properties of friction stir welded Mg−Zn−Y−Zr alloy. Materials Science and Engineering: A, 471(1-2):63–68, 2007.

[28] Wang, Jingfeng, Song, Pengfei, Gao, Shan, Wei, Yiyun, and Pan, Fusheng. Influence of Y on the phase composition and mechanical properties of as-extruded Mg−Zn−Y−Zr magnesium alloys. Journal of Materials Science, 47(4):2005–2010, 2012.

[29] Tong, LB, Zheng, MY, Hu, XS, Wu, K, Xu, SW, Kamado, S, and Kojima, Y. Influence of ECAP routes on microstructure and mechanical properties of Mg−Zn−Ca alloy. Materials Science and Engineering: A, 527(16-17):4250–4256, 2010.

[30] Naghdali, Saeedeh, Jafari, Hassan, and Malekan, Mehdi. Cooling curve thermal analysis and microstructure characterization of Mg−5Zn−1Y−x Ca (0−1wt%) alloys. Thermochimica acta, 667:50–58, 2018.

[31] Liu, De-Bao, Wu, Bo, Wang, Xiao, and Chen, Min-Fang. Corrosion and wear behavior of an Mg−2Zn−0.2Mn alloy in simulated body fluid. Rare Metals, 34(8):553–559, 2015.

[32] Aung, Naing Naing, Zhou, Wei, and Lim, Lennie EN. Wear behaviour of AZ91D alloy at low sliding speeds. Wear, 265(5-6):780–786, 2008.

[33] Taltavull, C, Rodrigo, P, Torres, B, Lopez, AJ, and Rams, J. Dry sliding wear behavior of am50b magnesium alloy. Materials & Design (1980-2015), 56:549–556, 2014.

[34] García-Rodríguez, S, Torres, B, Maroto, A, López, AJ, Otero, E, and Rams, J. Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear, 390:1–10, 2017.

[35] Taltavull, C, Torres, B, Lopez, AJ, and Rams, J. Dry sliding wear behavior of AM60B magnesium alloy. Wear, 301(1-2):615–625, 2013.

[36] Li, Hua, Liu, Debao, Zhao, Yue, Jin, Feng, and Chen, Minfang. The influence of Zn content on the corrosion and wear performance of Mg−Zn−Ca alloy in simulated body fluid. Journal of Materials Engineering and Performance, 25(9):3890–3895, 2016.

[37] Dai, Jianwei, Zhang, Xiaobo, Yin, Qiao, Ni, Shengnan, Ba, Zhixin, and Wang, Zhangzhong. Friction and wear behaviors of biodegradable Mg−6Gd−0.5Zn−0.4Zr alloy under simulated body fluid condition. Journal of magnesium and alloys, 5(4):448–453, 2017.

[38] Levi, G, Avraham, S, Zilberov, A, and Bamberger, M. Solidification, solution treatment and age hardening of a Mg−1.6wt.%Ca−3.2wt.%Zn alloy. Acta Materialia, 54(2):523–530, 2006.

[39] Reddy, A Somi, Bai, BN Pramila, Murthy, KSS, and Biswas, SK. Mechanism of seizure of aluminium-silicon alloys dry sliding against steel. Wear, 181:658–667, 1995.

[40] Bai, BN Pramila and Biswas, SK. Effect of magnesium addition and heat treatment on mild wear of hypoeutectic aluminium-silicon alloys. Acta metallurgica et materialia, 39(5):833–840, 1991.

[41] Bayer Raymond, G. Mechanical wear fundamentals and testing. New York, USA, 2004.

[42] Coy, AE, Viejo, F, Garcia-Garcia, FJ, Liu, Z, Skeldon, P, and Thompson, GE. Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy. Corrosion Science, 52(2):387–397, 2010.

[43] Niki, Yasuo, Matsumoto, Hideo, Suda, Yasunori, Otani, Toshiro, Fujikawa, Kyosuke, Toyama, Yoshiaki, Hisamori, Noriyuki, and Nozue, Akira. Metal ions induce boneresorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials, 24(8):1447–1457, 2003.

[44] Fan, Jun, Qiu, Xin, Niu, Xiaodong, Tian, Zheng, Sun, Wei, Liu, Xiaojuan, Li, Yangde, Li, Weirong, and Meng, Jian. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg−1.5Y−1.2Zn−0.44Zr alloys for biodegradable metallic implants. Materials Science and Engineering: C, 33(4):2345–2352, 2013.

[45] Bornapour, M, Celikin, M, Cerruti, M, and Pekguleryuz, M. Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Materials Science and Engineering: C, 35:267– 282, 2014.

[46] Virtanen, Sannakaisa. Biodegradable mg and mg alloys: Corrosion and biocompatibility. Materials Science and Engineering: B, 176(20):1600–1608, 2011.

[47] Yang, Mingbo, Cheng, Liang, and Pan, Fusheng. Comparison about effects of Ce, Sn and Gd additions on as-cast microstructure and mechanical properties of Mg−3.8Zn−2.2Ca (wt%) magnesium alloy. Journal of materials science, 44(17):4577–4586, 2009.

[48] Yang, Ming-bo, Wu, De-yong, Hou, Meng-dan, and Pan, Fu-sheng. As-cast microstructures and mechanical properties of Mg−4Zn−x Y−1Ca (x = 1.0, 1.5, 2.0, 3.0) magnesium alloys. Transactions of Nonferrous Metals Society of China, 25(3):721–731, 2015.