مروری بر برداشت کننده های انرژی دریایی مبتنی بر مبدل پیزوالکتریک

نوع مقاله: مقاله علمی ترویجی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

با توجه به تقاضای روزافزون بشر به انرژی، مطالعات بسیاری در حوزة برداشت انرژی متمرکز شده‌اند. هدف اصلی این تحقیقات، تولید انرژی از منابع محیط اطراف است. با توجه به اینکه 70 درصد سطح کرة زمین را اقیانوس‌ها و دریاها فراگرفته‌اند، انرژی دریایی یکی از پرادعاترین منابع در این حوزه به حساب می‌آید. این منبع، پاک، بدون پسماند و دردسترس است. در عین حال چگالی بزرگتری نسبت به سایر همتایان خود (باد و خورشید) دارد. با توجه به این مزایا، در مطالعه حاضر روش‌های برداشت انرژی از انرژی دریایی ارائه خواهدشد. برداشت‌کننده‌های دریایی مطابق با نوع بهره‌برداری از منابع دریا و محل قرارگیری آن طبقه-بندی و معرفی می‌شوند. بیان خواهد شد که برداشت‌کننده‌های امواج دریایی از دو قسمت دریافت‌کننده و مبدل تشکیل می‌شوند. هر یک از این قسمت‌ها و انواع آن با جزئیات، ارائه و بررسی خواهد شد. در نهایت، پژوهش‌های مرتبط با مهم‌ترین مبدل یعنی مبدل پیزوالکتریکی معرفی می‌شود.

کلیدواژه‌ها

موضوعات


[1] Sieminski, Adam et al. International energy outlook. Energy Information Administration (EIA), 18, 2014.

[2] Save on energy, 2018.

[3] López,Iraide,Andreu,Jon,Ceballos,Salvador,deAlegría, IñigoMartínez,andKortabarria,Iñigo. Reviewofwaveenergy technologies and the necessary power-equipment. Renewable and sustainable energy reviews, 27:413–434, 2013.

[4] Drew, Benjamin, Plummer, Andrew R, and Sahinkaya, M Necip. A review of wave energy converter technology, 2009.

[5] Pelc, Robin and Fujita, Rod M. Renewable energy from the ocean. Marine Policy, 26(6):471–479, 2002.

[6] Power buoys: electricity from waves, 2001.

[7] Czech, Balazs and Bauer, Pavol. Wave energy converter concepts: Design challenges and classification. IEEE Industrial Electronics Magazine, 6(2):4–16, 2012.

[8] Dodge, Darrell M. Illustrated history of wind power development. Darell M. Dodge, 2001.  

[9] Murray, R and Rastegar, J. Novel two-stage piezoelectricbased ocean wave energy harvesters for moored or unmoored buoys. in Active and Passive Smart Structures and Integrated Systems 2009, vol. 7288, p. 72880E. International Society for Optics and Photonics, 2009

 [10] Kumar, Ch Naveen. Energy collection via piezoelectricity. in Journal of Physics: Conference Series, vol. 662, p. 012031. IOP Publishing, 2015.

[11] Jamal, GR Ahmed, Hassan, Hamidul, Das, Amitav, Ferdous, Jannatul, and Lisa, Sharmin A. A novel battery charger operated from random sound sources or air pressure. in 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–4. IEEE, 2014.

[12] Granstrom, Jonathan, Feenstra, Joel, Sodano, Henry A, and Farinholt, Kevin. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 16(5):1810, 2007

. [13] Nia, Elham Maghsoudi, Zawawi, Noor Amila Wan Abdullah, and Singh, Balbir Singh Mahinder. A review of walkingenergyharvestingusingpiezoelectricmaterials. inIOP ConferenceSeries: MaterialsScienceandEngineering,vol. 291, p. 012026. IOP Publishing, 2017.

[14] Wang, Hao, Jasim, Abbas, and Chen, Xiaodan. Energy harvesting technologies in roadway and bridge for different applications–a comprehensive review. Applied energy, 212:1083–1094, 2018.

[15] Donelan, J Maxwell, Li, Qinggua, Naing, Veronica, Hoffer, JA,Weber,DJ,andKuo,ArthurD. Biomechanicalenergy harvesting: generatingelectricityduringwalkingwithminimal user effort. Science, 319(5864):807–810, 2008.

[16] Yang, Rusen, Qin, Yong, Li, Cheng, Zhu, Guang, and Wang, Zhong Lin. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Letters, 9(3):1201–1205, 2009.

[17] Zurbuchen, Adrian, Pfenniger, Aloïs, Stahel, Andreas, Stoeck,ChristianT,Vandenberghe,Stijn,Koch,VolkerM, and Vogel, Rolf. Energy harvesting from the beating heart by a mass imbalance oscillation generator. Annals of biomedical engineering, 41(1):131–141, 2013.

[18] Dagdeviren, Canan, Yang, Byung Duk, Su, Yewang, Tran, Phat L, Joe, Pauline, Anderson, Eric, Xia, Jing, Doraiswamy, Vijay, Dehdashti, Behrooz, Feng, Xue, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences, 111(5):1927– 1932, 2014.

[19] Anton, Steven R and Inman, Daniel J. Vibration energy harvestingforunmannedaerialvehicles. inActiveandPassive Smart Structures and Integrated Systems 2008, vol. 6928, p. 692824. International Society for Optics and Photonics, 2008.

[20] Lee, Jaeyun and Choi, Bumkyoo. Development of a piezoelectricenergyharvestingsystemforimplementingwireless sensors on the tires. Energy conversion and management, 78:32–38, 2014.

[21] Khan, FaridUllahetal. Stateoftheartinacousticenergy harvesting. JournalofMicromechanicsandMicroengineering, 25(2):023001, 2015.

[22] Cornett,AndrewMetal.Aglobalwaveenergyresourceassessment.inTheEighteenthInternationalOffshoreandPolar Engineering Conference. International Society of Offshore and Polar Engineers, 2008.

[23] Vega, Luis A. Ocean thermal energy conversion. Encyclopedia of sustainability science and technology, pp. 7296– 7328, 2012.

[24] Rourke, Fergal O, Boyle, Fergal, and Reynolds, Anthony. Tidal energy update 2009. Applied Energy, 87(2):398–409, 2010.

[25] Musial, Walter and Ram, Bonnie. Large-scale offshore wind power in the united states: Assessment of opportunities and barriers. tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010.

[26] 2018.

[27] Hammons, Thomas James. Tidal power. Proceedings of the IEEE, 81(3):419–433, 1993.

[28] Henderson, Andrew R, Morgan, Colin, Smith, Bernie, Sørensen, Hans C, Barthelmie, Rebecca J, and Boesmans, Bart. Offshore wind energy in europe—a review of the state-of-the-art. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 6(1):35–52, 2003.

[29] Colmenar-Santos, Antonio, Perera-Perez, Javier, BorgeDiez, David, and dePalacio Rodríguez, Carlos. Offshore wind energy: A review of the current status, challenges and future development in spain. Renewable and Sustainable Energy Reviews, 64:1–18, 2016.

[30] Whittaker, TJT, Beattie, W, Folley, M, Boake, C, Wright, A, Osterried, M, and Heath, T. The limpet wave power project–the first years of operation. Renewable Energy, 2004.

[31] Clément, Alain, McCullen, Pat, Falcão, António, Fiorentino, Antonio, Gardner, Fred, Hammarlund, Karin, Lemonis, George, Lewis, Tony, Nielsen, Kim, Petroncini, Simona, et al. Wave energy in europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5):405–431, 2002.

[32] Melikoglu, Mehmet. Current status and future of ocean energy sources: A global review. Ocean Engineering, 148:563–573, 2018.

 [33] 2018.

[34] Kofoed, Jens Peter, Frigaard, Peter, Friis-Madsen, Erik, andSørensen,HansChr. Prototypetestingofthewaveenergy converter wave dragon. Renewable energy, 31(2):181– 189, 2006. [35] Takao, Manabu and Setoguchi, Toshiaki. Air turbines for wave energy conversion. International Journal of Rotating Machinery, 2012, 2012.

 [36] Falcão, António FO and Henriques, Joao CC. Oscillatingwater-column wave energy converters and air turbines: A review. Renewable Energy, 85:1391–1424, 2016.

[37] Falcão, António FO, Henriques, João CC, Gato, Luís MC, and Gomes, Rui PF. Air turbine choice and optimizationforfloatingoscillating-water-columnwaveenergyconverter. Ocean engineering, 75:148–156, 2014.

 [38] Elvin, Niell and Erturk, Alper. Advances in energy harvesting methods. SpringerScience&BusinessMedia,2013.

 [39] Chen, H Ming and DelBalzo, Donald R. Electromagnetic springforslidingwaveenergyconverter.inOCEANS2015MTS/IEEE Washington, pp. 1–5. IEEE, 2015.

 [40] Trapanese, Marco. Optimization of a sea wave energy harvesting electromagnetic device. IEEE Transactions on Magnetics, 44(11):4365–4368, 2008.

 [41] Yin, Xiuxing, Li, Xiaofan, Boontanom, Vicky, and Zuo, Lei. Mechanical motion rectifier based efficient power takeoff for ocean wave energy harvesting. in ASME 2017 Dynamic Systems and Control Conference, pp. V003T41A002–V003T41A002. American Society of Mechanical Engineers, 2017.

[42] Erturk, Alper and Inman, Daniel J. Piezoelectric energy harvesting. John Wiley & Sons, 2011.

[43] Wu, Nan, Wang, Quan, and Xie, XiangDong. Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Applied Ocean Research, 50:110–118, 2015. [44] Priya, Shashank. Advances in energy harvesting using low profile piezoelectric transducers. Journal of electroceramics, 19(1):167–184, 2007.

[45] Zurkinden, AS, Campanile, F, and Martinelli, L. Wave energy converter through piezoelectric polymers. in Proceedings of the COMSOL Users Conference (Grenoble), 2007.

[46] Erturk, Alper and Delporte, Ghislain. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms. Smart materials and Structures, 20(12):125013, 2011.

[47] Cha, Youngsu, Kim, Hubert, and Porfiri, Maurizio. Energyharvestingfromunderwaterbaseexcitationofapiezoelectric composite beam. Smart materials and Structures, 22(11):115026, 2013.

 [48] Xie, XD, Wang, Q, and Wu, N. Energy harvesting from transverse ocean waves by a piezoelectric plate. International Journal of Engineering Science, 81:41–48, 2014.

[49] Xie, XD,Wang, Q,andWu, N. Potentialofapiezoelectric energy harvester from sea waves. Journal of Sound and Vibration, 333(5):1421–1429, 2014.

 [50] Viet, NV, Xie, XD, Liew, KM, Banthia, N, and Wang, Q. Energy harvesting from ocean waves by a floating energy harvester. Energy, 112:1219–1226, 2016.

 [51] Hwang, Won Seop, Ahn, Jung Hwan, Jeong, Se Yeong, Jung, Hyun Jun, Hong, Seong Kwang, Choi, Jae Yoon, Cho, Jae Yong, Kim, Jung Hun, and Sung, Tae Hyun. Design of piezoelectric ocean-wave energy harvester using sway movement. Sensors and Actuators A: Physical, 260:191–197, 2017.

[52] Mutsuda, Hidemi, Tanaka,Yoshikazu,Patel,Rupesh, Doi, Yasuaki, Moriyama, Yasuo, and Umino, Yuji. A painting type of flexible piezoelectric device for ocean energy harvesting. Applied Ocean Research, 68:182–193, 2017