مروری بر مدل‌های آسایش حرارتی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه بیرجند

چکیده

آسایش حرارتی حالتی ذهنی است که میزان رضایت فرد از شرایط حرارتی محیط را بیان می‌کند. قضاوت دربارة آسایش حرارتی فرایند پیچیده‌ای است که تحت تأثیر عوامل فیزیکی، فیزیولوژیکی و روانشناختی قرار دارد. تحقیقات انجام شده در زمینه بررسی احساس و آسایش حرارتی، شامل مطالعات تحلیلی، مطالعات آزمایشگاهی و تدوین استانداردها می‌باشد. در رویکرد تحلیلی از طریق معادلات موازنه انرژی برای بدن و یا ارزیابی پاسخ حسگرهای پوستی و نیز شبیه‌سازی فرایندهای فیزیولوژیکی، انتقال حرارت، پاسخ فیزیولوژیکی و توزیع دمای بافت‌های بدن پیش‌بینی می‌شود. مطالعات آزمایشگاهی نیز اغلب به صورت انجام آزمایش روی افراد مختلف در اتاقک‌های کنترل شده به منظور ارزیابی دمای پوست/هسته بدن و در نهایت ارائه شاخص ارزیابی احساس حرارتی موضعی و کلی می‌باشد. در این مقاله به دسته بندی، مرور کلی و ارزیابی مزایا و محدودیت‌های مدل‌های آسایش حرارتی پرداخته شده است.
واژگان کلیدی: آسایش حرارتی، مدل‌های ترموفیزیولوژیکی، مدل‌های مبتنی بر پاسخ حسگرهای حرارتی پوستی، احساس حرارتی موضعی و کلی، رویکرد تحلیلی و آزمایشگاهی

کلیدواژه‌ها

موضوعات


[1] ASHRAE, ANSI. Standard 55-2004, thermal environmental conditions for human occupancy, atlanta: american society of heating, refrigerating, and air-conditioning engineers. Inc., USA, 2004.

[2] Cheng, Yuanda, Niu, Jianlei, and Gao, Naiping. Thermalcomfortmodels: Areviewandnumericalinvestigation. Building and Environment, 47:13–22, 2012.

[3] Maerefat, M and Omidvar, A. Thermal Comfort. Kelid Amoozesh, 2008.

 [4] Katic, Katarina, Li, Rongling, and Zeiler, Wim. Thermophysiological models and their applications: A review. Building and Environment, 106:286–300, 2016.

 [5] Parsons, Ken. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. CRC press, 2014.

 [6] Fanger, Poul O et al. Thermal comfort. analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering., 1970.

 [7] Gagge, Adolf P. An effective temperature scale based on a simple model of human physiological regulatory response. Ashrae Trans., 77:247–262, 1971.

 [8] Zolfaghari, S.A. Modification of standard thermal comfort models by using the frequency thermal analysis of the human body. Ph.D. thesis, Department of Mechanical Engineering, Tarbiat Modares University, Tehran, 2010.

[9] Zolfaghari, Alireza and Maerefat, Mehdi. A new simplified model for evaluating non-uniform thermal sensation caused by wearing clothing. Building and Environment, 45(3):776–783, 2010.

 [10] Dongmei, Pan, Mingyin, Chan, Shiming, Deng, and Minglu, Qu. A four-node thermoregulation model for predicting the thermal physiological responses of a sleeping person. Building and Environment, 52:88–97, 2012.

[11] Davoodi, Farzin, Hasanzadeh, Hasan, Zolfaghari, Seyed Alireza, and Maerefat, Mehdi. Developing a new individualized 3-node model for evaluating the effects of personal factors on thermal sensation. Journal of thermal biology, 69:1–12, 2017.

 [12] Kaynakli,OmerandKilic,Muhsin. Investigationofindoor thermal comfort under transient conditions. Building and Environment, 40(2):165–174, 2005

. [13] Foda, Ehab and Sirén, Kai. A new approach using the pierce two-node model for different body parts. International journal of biometeorology, 55(4):519–532, 2011.

 [14] Stolwijk, Jan AJ. A mathematical model of physiological temperature regulation in man. 1971.

[15] Fiala, Dusan, Lomas, Kevin J, and Stohrer, Martin. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of applied physiology, 87(5):1957–1972, 1999.

 [16] Huizenga, Charlie, Hui, Zhang, and Arens, Edward. A modelofhumanphysiologyandcomfortforassessingcomplex thermal environments. Building and Environment, 36(6):691–699, 2001.

[17] Tanabe, Shin-ichi, Kobayashi, Kozo, Nakano, Junta, Ozeki,Yoshiichi,andKonishi,Masaaki.Evaluationofthermal comfort using combined multi-node thermoregulation (65mn) and radiation models and computational fluid dynamics (cfd). Energy and Buildings, 34(6):637–646, 2002.

 [18] Salloum, M, Ghaddar, N, and Ghali, K. A new transient bioheat model of the human body and its integration to clothingmodels. International journal of thermal sciences, 46(4):371–384, 2007.

[19] Al-Othmani, M, Ghaddar, N, and Ghali, K. A multisegmented human bioheat model for transient and asymmetric radiative environments. International Journal of Heat and Mass Transfer, 51(23-24):5522–5533, 2008.

[20] Kingma, BRM, Schellen, L, Frijns, AJH, and van Marken Lichtenbelt, WD. Thermal sensation: a mathematical model based on neurophysiology. Indoor air, 22(3):253–262, 2012.

 [21] Kobayashi, YutakaandTanabe, Shin-ichi. Developmentof jos-2 human thermoregulation model with detailed vascular system. Building and Environment, 66:1–10, 2013.

 [22] Lai, Dayi and Chen, Qingyan. A two-dimensional model for calculating heat transfer in the human body in a transient and non-uniform thermal environment. Energy and Buildings, 118:114–122, 2016.

 [23] Fiala, Dusan, Lomas, Kevin J, and Stohrer, Martin. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology, 45(3):143– 159, 2001.

 [24] Kingma, Boris RM, Vosselman, MJ, Frijns, AJH, van Steenhoven, AA, and van Marken Lichtenbelt, WD. Incorporating neurophysiological concepts in mathematical thermoregulation models. International journal of biometeorology, 58(1):87–99, 2014.

 [25] Smith, CarolElaine. Atransient, three-dimensionalmodel of the human thermal system. KSU, Dissertation, 1993.

[26] Fu, George. A transient, 3-d mathematical thermal model for the clothed human. KSU, Dissertation, 1995.

[27] Li, Fengzhi, Li, Yi, and Wang, Yang. A 3d finite element thermal model for clothed human body. Journal of Fiber Bioengineering and Informatics, 6(2):149–160, 2013.

[28] Foda, E. Evaluating Local and overall thermal comfort in buildings using thermal manikins. Ph.D. thesis, Aalto University, 2012.

[29] Wyon, David P, Larsson, S, Forsgren, B, and Lundgren, I. Standard procedures for assessing vehicle climate with a thermal manikin. SAE transactions, pp. 46–56, 1989.

 [30] Walgama, C, Fackrell, S, Karimi, M, Fartaj, A, and Rankin, GW. Passenger thermal comfort in vehiclesa review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(5):543–562, 2006.

[31] Matsunaga, Kazuhiko, Sudo, Fujio, Tanabe, Shin-ichi, and Madsen, Thomas Lund. Evaluation and measurement of thermal comfort in the vehicles with a new thermal manikin. tech. rep., SAE Technical Paper, 1993.

[32] Kohri, Itsuhei and Mochida, Tohru. Evaluation method of thermal comfort in a vehicle with a dispersed two-node model part 1—development of dispersed two-node model. Journal of the Human-Environment System, 6(1):19–29, 2002.

[33] Jones, BW. Transient interaction between the human and thethermalenvironment. ASHRAETrans.,98(1):189–195, 1992.

[34] Hagino, Mitsuaki and Hara, Junichiro. Development of a method for predicting comfortable airflow in the passenger compartment. tech. rep., SAE Technical Paper, 1992

. [35] Nilsson, Håkan O. Thermal comfort evaluation with virtual manikin methods. Building and Environment, 42(12):4000–4005, 2007.

[36] Fiala, Dusan, Lomas, Kevin J, and Stohrer, Martin. First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE transactions, 109:179, 2003.

[37] Wang, Xiaoling. Thermal comfort and sensation under transient conditions. Ph.D. thesis, Department of Energy Technology,DivisionofHeatingandVentilation,theRoyal Institute of Technology, 1994.

[38] De Dear, RJ, Ring, JW, and Fanger, PO. Thermal sensations resulting from sudden ambient temperature changes. Indoor air, 3(3):181–192, 1993.

[39] Zhang, H. Human thermal sensation and comfort in transientandnon-uniformthermalenvironments. Ph.D.thesis, University of California, Berkeley, 2003.

 [40] Zhang, Hui, Arens, Edward, Huizenga, Charlie, and Han, Taeyoung. Thermalsensationandcomfortmodelsfornonuniform and transient environments: Part i: Local sensation of individual body parts. Building and Environment, 45(2):380–388, 2010.

[41] Zhang, Hui, Arens, Edward, Huizenga, Charlie, and Han, Taeyoung. Thermal sensation and comfort models for non-uniform and transient environments, part iii: Wholebody sensation and comfort. Building and Environment, 45(2):399–410, 2010.

[42] Foda, Ehab, Almesri, Issa, Awbi, HazimB,andSirén, Kai. Models of human thermoregulation and the prediction of local and overall thermal sensations. Building and Environment, 46(10):2023–2032, 2011.

[43] Jin, Quan, Li, Xiangli, Duanmu, Lin, Shu, Haiwen, Sun, Yuming, and Ding, Qianru. Predictive model of local and overall thermal sensations for non-uniform environments. Building and Environment, 51:330–344, 2012.

 [44] Maerefat, Mehdi, Zolfaghari, Alireza, et al. Introducing a new thermal comfort model for evaluation of local and overall thermal sensation in non-uniform environments. Modares Mechanical Engineering, 17(8):444–450, 2017.

[45] He, Yingdong, Li, Nianping, Zhang, Wenjie, and Peng, Jinqing. Overall and local thermal sensation & comfort in air-conditioned dormitory with hot-humid climate. Building and Environment, 101:102–109, 2016.

 [46] Fang, Zhaosong, Liu, Hong, Li, Baizhan, Tan, Meilan, andOlaide, OladokunMajeed. Experimentalinvestigation on thermal comfort model between local thermal sensation and overall thermal sensation. Energy and Buildings, 158:1286–1295, 2018

. [47] Melikov, AK, Krüger, U, Zhou, Genhong, Madsen, TL, and Langkilde, Gunnar. Air temperature fluctuations in rooms. Building and Environment, 32(2):101–114, 1997.

 [48] Hensel, H. Thermoreception and temperature regulation. London: Academic Press, 1981.

 [49] Ring,JWanddeDear,Richard.Temperaturetransients: a model for heat diffusion through the skin, thermoreceptor response and thermal sensation. Indoor Air, 1(4):448–456, 1991.

[50] Ring, JW, de Dear, Richard, and Melikov, Arsen. Human thermal sensation: frequency response to sinusoidal stimuli at the surface of the skin. Energy and Buildings, 20(2):159–165, 1993.

 [51] Pennes,HarryH. Analysisoftissueandarterialbloodtemperaturesintherestinghumanforearm. Journal of applied physiology, 1(2):93–122, 1948.

[52] Lv, Yong-Gang and Liu, Jing. Effect of transient temperature on thermoreceptor response and thermal sensation. Building and Environment, 42(2):656–664, 2007.

 [53] Zolfaghari, Alireza and Maerefat, Mehdi. A new simplified thermoregulatory bioheat model for evaluating thermalresponseofthehumanbodytotransientenvironments. Building and Environment, 45(10):2068–2076, 2010.

 [54] Zolfaghari, AlirezaandMaerefat, Mehdi. Anewpredictive index for evaluating both thermal sensation and thermal response of the human body. Building and Environment, 46(4):855–862, 2011.

[55] Davoodi, Farzin, Hassanzadeh, Hassan, Zolfaghari, Seyed Alireza, Havenith, George, and Maerefat, Mehdi. A new individualized thermoregulatory bio-heat model for evaluating the effects of personal characteristics on human body thermal response. Building and Environment, 136:62–76, 2018.

 [56] Khiavi, Negin Moallemi, Maerefat, Mehdi, and Zolfaghari, Seyed Alireza. A new local thermal bioheat model for predictingthetemperatureofskinthermoreceptorsofindividual body tissues. Journal of thermal biology, 74:290–302, 2018.