مروری بر استراتژی های بهینه سازی آیرودینامیکی ملخ بالگرد

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، دانشکده مهندسی و پرواز، دانشگاه امام علی(ع)، تهران

2 مربی، دانشکده مهندسی و پرواز، دانشگاه امام علی(ع)، تهران

3 دانشیار، گروه مهندسی هوافضا، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران

چکیده

در تحقیق حاضر مروری بر استراتژی های کلی مورد استفاده در بهینه سازی آیرودینامیکی ملخ بالگرد با هدف انجام کاهش منابع محاسباتی فرایند بهینه سازی عملکرد طرح ‌های آیرودینامیکی جدید ملخ انجام شده است. این مطالعه با نگاهی مختصر به مفاهیم و دلایل ایجاد آیرودینامیک غیر دائم و چالش های اساسی ایجاد شده برای مواجه با این مسئله اساسی در طراحی و بهینه سازی ملخ بالگرد شروع شده سپس، روش های طراحی و بهینه سازی گذشته و حال استفاده یا پیشنهاد شده و توسعه ابزارهای تجزیه و تحلیل برای ارزیابی عملکرد ملخ مورد بررسی قرار می­گیرند تا درک بهتری از مسئله مذکور حاصل شود. نتیجه مطالعه نشان داد علیرغم استفاده از دانش آیرودینامیکی کلاسیک، تونل باد، آزمایش ملخ مدل و محاسبات آیرودینامیکی نسبتاً پایین در گذشته، توسعه اخیر دینامیک سیالات محاسباتی (CFD) اکنون فرصتی را برای پیش‌بینی دقیق میدان جریان لزج و قابل تراکم در پیرامون ملخ و در نتیجه پیش‌بینی عملکرد طراحی‌های جدید آن ارائه می‌دهند. لذا استفاده از این ابزارها بعنوان ابزاری نوین برای شبیه­ سازی­هایی با همانندی بالا در کنار استفاده از روش­های مدل‌سازی­ جایگزین با همانندی متغیر اکثر جنبه­ های مسئله بهینه سازی آیرودینامیکی ملخ بالگرد را بوسیله هزینه­ های محاسباتی و زمانی کاهش یافته پوشش خواهند داد.

کلیدواژه‌ها

موضوعات


[1] Barakos, G., et al., CFD simulation of helicopter rotor flow based on unsteady actuator disk model. Chinese Journal of Aeronautics, 33(9): pp. 2313-2328, (2020).
[2] Afthon, M. and M. Moelyadi, A Study in Aerodynamic Optimization of UAV Helicopter Rotor-Blades Planform in Vertical Motion. AVIA, 2(1), (2021).
[3] Celi, R., Recent applications of design optimization to rotorcraft-a survey. Journal of Aircraft, 36(1): pp. 176-189, (1999).
[4] Ganguli, R., A survey of recent developments in rotorcraft design optimization. Journal of Aircraft, 41(3): pp. 493-510, (2004).
[5] Montgomery, D.C., Introduction to statistical quality control,John Wiley & Sons, (2020).
[6] Hilewit, D., et al., Numerical investigations of a novel vertical axis wind turbine using Blade Element Theory‐Vortex Filament Method (BET‐VFM). Energy Science & Engineering, 7(6): pp. 2498-2509, (2019).
[7] Conlisk, A., Modern helicopter rotor aerodynamics. Progress in aerospace sciences, 37(5): pp. 419-476,(2001).
[8] Peixun, Y., et al., Aeroacoustic and aerodynamic optimization of propeller blades. Chinese Journal of Aeronautics, 33(3): pp. 826-839, (2020).
[9] Kunz, D. Comprehensive rotorcraft analysis: Past, present, and future. in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, (2005).
[10] Koning, W.J., W. Johnson, and H.F. Grip, Improved Mars helicopter aerodynamic rotor model for comprehensive analyses. AIAA Journal, 57(9):pp. 3969-3979, (2019).
[11] Buchwald, M., et al., Flight performance calculation of rotorcraft in the conceptual design phase. Proceedings of The German Aerospace Congress , 04.-06. Sep, Friedrichshafen, (2018).
[12] Li, S.K., Development of Rotorcraft Forward Flight Analysis Code Using the Finite-State Dynamic Inflow Model, PhD Thesis, University of California, Davis, (2020).
[13] Eberhardt, C., Introduction to theoretical aerodynamics, Oldenbourg Wissenschaftsverlag, (2019). (in German)
[14] Sharma, A., A. Padthe, and PP.PP. Friedmann, Helicopter Shipboard Landing Simulation Including Wind, Deck Motion and Dynamic Ground Effect. Journal of Aircraft, 58(3): pp. 467-486, (2021).
[15] Wake, B.E. and L.N. Sankar, Solutions of the Navier‐Stokes Equations for the Flow About a Rotor Blade. Journal of the American Helicopter Society, 34(2): pp. 13-23, (1989).
[16] Strawn, R.C., F.X. Caradonna, and E.PP. Duque, 30 years of rotorcraft computational fluid dynamics research and development. Journal of the American Helicopter Society, 51(1): pp. 5-21, (2006).
[17] Egolf, T.A. and S.PP. Sparks, A Full Potential Rotor Analysis With Wake Influence Using an Inner‐Outer Domain Technique. Journal of the American Helicopter Society, 32(3): pp. 15-24, (1987).
[18] Carnes, J.A., Computational Fluid Dynamics Assessment of Laminar-Turbulent Boundary Layer Transition and its Application to Rotorcraft. MS. Thesis, university of Tennessee, (2020).
[19] Campobasso, M., et al., Low-speed preconditioning for strongly coupled integration of Reynoldsaveraged Navier Stokes equations and two-equation turbulence models. Aerospace Science and Technology, 77: pp. 286-298, (2018).
[20] Zhao, Q. Numerical Simulation of Rotor in Hover and Forward Flight. Proceedings of The MATEC Web of Conferences. EDP Sciences, (2018).
[21] Duan, Z. and Z. Wang, High-order overset flux reconstruction method for dynamic moving grids. AIAA Journal, 58(10): pp. 4534-454, (2020).
[22] You, Y., D. Na, and S.N. Jung, Improved rotor aeromechanics predictions using a fluid structure interaction approach. Aerospace Science and Technology, 73: pp. 118-128, (2018).
[23] Ricci, F., et al., Hovering rotor solutions by highorder methods on unstructured grids. Aerospace Science and Technology, 97: pp. 105648, (2020).
[24] Kowarsch, U., et al., Aeroacoustic Simulation of a complete H145 Helicopter in descent flight. Journal of the American Helicopter Society, 61(4): pp. 1-13, (2016).
[25] Bowen-Davies, G. and H. Yeo, UH-60A rotor performance and loads correlation at high advance ratios. Journal of Aircraft, 55(1): pp. 275-293, (2018).
[26] Pulok, M.K.H. and U.K. Chakravarty. An Investigation of the Wake and Vortex Formation of a Helicopter Rotor Blade. Proceedings of The ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, (2021).
[27] Whitehouse, G.R., Investigation of hybrid grid–based computational fluid dynamics methods for rotorcraft flow analysis. Journal of the American Helicopter Society, 56(3): pp. 1-10, (2011).
[28] Bresciani, A.PP.C. and A. Abbà, Large Eddy Simulation of the Transitional Flow Around the SD7003 Airfoil and Application to Blade–Vortex Interaction. Aerotecnica Missili & Spazio, 99(4): pp. 275-285, (2020).
[29] Choi, S., et al. Validation study of aerodynamic analysis tools for design optimization of helicopter rotors. Proceedings of The 25th AIAA Applied Aerodynamics Conference. (2007).
[30] Sharma, A. and M. Visbal, Numerical investigation of the effect of airfoil thickness on onset of dynamic
stall. Journal of Fluid Mechanics, 870: pp. 870-900, (2019).
[31] Bangga, G., et al. Improving a two-equation eddyviscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils. Journal of Physics: Conference Series,IOP Publishing, (2018).
[32] Fisher, R., T. Nishino, and M. Savill, Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 55(3): pp. 1064-106, (2017).
[33] Wilbur, I.C., et al., UH-60A rotor analysis with an accurate dual-formulation hybrid aeroelastic methodology. Journal of Aircraft, 57(1): pp. 113-127, (2020).
[34] Smith, M.J., et al., Time-And-Spatially Adapting Simulations For Efficient Dynamic Stall Predictions. Georgia Tech Research inst Atlanta, (2015).
[35] İBAÇOĞLU, H. and A. ARIKOĞLU, Multidisciplinary Conceptual Design Methodology and Design Tool for Rotor Blades of Advanced Helicopters. Journal of Aeronautics and Space Technologies, 15(1): pp. 19-33, (2022).
[36] Wilke, G., Variable-fidelity methodology for the aerodynamic optimization of helicopter rotors. AIAA Journal, 57(8): pp. 3145-3158, (2019).
[37] Mondal, S., M.M. Joly, and S. Sarkar. Multifidelity global-local optimization of a transonic compressor rotor. Proceedings of The Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, (2019).
[38] Kodakkattu, S.K., PP. Nair, and M. Joy, Design optimization of helicopter rotor using kriging. Aircraft Engineering and Aerospace Technology, (2018).
[39] Deng, X., Y. Hung, and C.D. Lin, Design and analysis of computer experiments, Handbook of Research on Applied Cybernetics and Systems Science, IGI Global. pp. 264-279, (2017).
[40] Assibey-Bonsu, W., Professor Danie Krige’s First Memorial Lecture: The Basic Tenets of Evaluating
the Mineral Resource Assets of Mining Companies, as Observed in Professor Danie Krige’s Pioneering Work Over Half a Century, Geostatistics Valencia , Springer. pp. 3-25, (2017).
[41] Siller, U., C. Voß, and E. Nicke, Automated Multidisciplinary Optimization of a Transonic Axial Compressor AIAA--0863, (2009).
[42] Qian, J., et al., A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem. Engineering with Computers, 36(3): pp. 993-1009, (2020).
[43] Johnson, C., Optimisation of aspects of rotor blades using computational fluid dynamics. PhD Thesis, University of Liverpool, (2012).
[44] Yasong, Q., et al., Global aerodynamic design optimization based on data dimensionality reduction. Chinese Journal of Aeronautics, 31(4): pp. 643-659, (2018).
[45] Carlberg, K. and C. Farhat. A compact proper orthogonal decomposition basis for optimizationoriented reduced-order models. Proceedings of The12th AIAA/ISSMO multidisciplinary analysis and optimization conference. (2008).
[46] Palar, PP.S., et al. On the use of surrogate models in engineering design optimization and exploration: The key issues. Proceedings of the Genetic and Evolutionary Computation Conference Companion.
(2019).
[47] Darwish, S., et al. Aerodynamic Shape Optimization of Helicopter Rotor Blades in Hover using Genetic Algorithm and Adjoint Method. Proceedings of The AIAA Aerospace Sciences Meeting. (2018).
[48] Dumont, A., et al., Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-Averaged Navier–Stokes Equations. Journal of the American Helicopter Society, 56(3): pp. 1-11, (2011).
[49] Choi, S., et al. Helicopter rotor design using a timespectral and adjoint-based method. Proceedings of The 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. (2008).
[50] Vu, N.A., J.W. Lee, and J.I. Shu, Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance. Chinese Journal of Aeronautics, 26(1): pp. 1-8, (2013).
[51] Massaro, A., A. D’Andrea, and E. Benini. Multiobjective-multipoint rotor blade optimization in forward flight conditions using surrogate-assisted memetic algorithms. Proceedings of The 37th European Rotorcraft Forum. AIDAA., (2011).
[52] Wang, Q. and Q. Zhao, Rotor aerodynamic shape design for improving performance of an unmanned helicopter. Aerospace Science and Technology, 87: pp. 478-487, (2019).
[53] Imiela, M., High-fidelity optimization framework for helicopter rotors. Aerospace Science and Technology, 23(1): pp. 2-16, (2012).
[54] Chae, S., et al., Helicopter rotor shape optimization for the improvement of aeroacoustic performance in hover. Journal of Aircraft, 47(5): pp. 1770-1783, (2010).
[55] Leon, E.R., et al., Concurrent aerodynamic optimization of rotor blades using a nash game method. Journal of the American Helicopter Society, 61(2): pp. 1-13, (2016).
[56] Benamara, T., et al., Multi-fidelity POD surrogateassisted optimization: Concept and aero-design study. Structural and Multidisciplinary Optimization, 56(6): pp. 1387-1412, (2017).
[57] Bailly, J. and D. Bailly, Multifidelity aerodynamic optimization of a helicopter rotor blade. AIAA Journal, 57(8): pp.3132-3144, (2019).
[58] Ariyarit, A., et al., Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design. Engineering Optimization, 50(6): pp. 1016-1040, (2018).