جریان سنجی دو مرحله‌ای جهت اندازه‌گیری مصارف گاز کمتر از جریان حداقل جریان سنج های توربینی

نوع مقاله : --

نویسندگان

1 دکتری مهندسی مکانیک، رئیس اندازه‌گیری و توزیع، شرکت گاز استان سمنان

2 تکنیسین ابزار دقیق، کارشناس اندازه‌گیری و توزیع، شرکت گاز استان سمنان

چکیده

یکی از تجهیزات اندازه­گیری پرکاربرد برای مصرف­کنندگان صنعتی گاز، جریان­سنج توربینی می باشد. این نوع از جریان­ سنج­ها دارای مزایای عملکردی فراوان نظیر دقت مناسب در مصارف نزدیک به ظرفیت نامی آنها، نگهداری و تعمیرات آسان می باشند. علیرغم این مزایا، نقطه‌ضعف آنها مربوط به‌ دقت غیرقابل قبول برای اندازه‌گیری جریان گاز در مصارف کم و عدم توانائی اندازه‌گیری در مصارف زیر جریان حداقل­-­تحت عنوان پدیده Qmin-­می باشد. در این مقاله به ­منظور ارائه راهکار برای حل این مشکل، جریان سنج دو مرحله ای با به­کارگیری سیستم کنترل اتوماتیک در یک ایستگاه اندازه‌گیری با ظرفیت 1000 مترمکعب بر ساعت طراحی و اجراگردید. هنگامی که جریان گاز از Qmin کنتور اصلی کمتر گردید، به وسیله سیستم کنترل اتوماتیک، جریان گاز وارد خط فرعی شده و نسبت به اندازه گیری جریان گاز-­که پیش­تر به حساب نمی آمد- اقدام گردید.­ عملکرد سیستم پیشنهاد شده در این مقاله، در طول یک ­سال در ایستگاه مورد مطالعه، پایش گردید. نتایج نشان داد میزان 25152 مترمکعب از جریان گاز طبیعی که پیش از اجرای این تحقیق امکان اندازه گیری آن وجود نداشت، اندازه گیری گردید. همچنین دوره بازگشت سرمایه با در نظر گرفتن تعرفه صنعتی و قیمت صادارتی گاز، به ترتیب کمتر از سه و نیم سال و حدود دوماه محاسبه گردید.

کلیدواژه‌ها

موضوعات


[1] Farzaneh-Gord M., Farsiani M., A. Khosravi A., A. Arabkoohsar A., and Dashti F., “A novel method for calculating natural gas density based on Joule Thomson coefficient,” J. Nat. Gas Sci. Eng., vol. 26, pp. 1018–1029, doi:10.1016/j.jngse.2015.07.029, (2015).
[2] Farzaneh-Gord M. and Deymi-Dashtebayaz M., “Recoverable Energy in Natural Gas Pressure Drop Stations: A Case Study of the Khangiran Gas Refinery,” Energy Explor. Exploit., vol. 26, no. 2, pp. 71–82, doi: 10.1260/014459808785260508, (2008).
[3] Rastegar S., Kargarsharifabad H., Shafii M. B., and Rahbar N., “Experimental investigation of the increasing thermal efficiency of an indirect water bath heater by use of thermosyphon heat pipe,” Therm. Sci., vol. Online, doi: https://doi.org/10.2298/TSCI190428054, (2020).
[4] Rastegar S., Kargarsharifabad H., Rahbar N., and Shafii M. B., “Distilled water production with combination of solar still and thermosyphon heat pipe heat exchanger coupled with indirect water bath heater – experimental study and thermoeconomic,” Appl. Therm. Eng., p. 115437, doi: 10.1016/j.applthermaleng.115437, (2020).
[5] Rastegar S., Kargarsharifabad H., Khalesi Doost A., and Rahbar N., “Developing a Model for Predicting the Outlet Gas Temperature of Natural Gas Pressure Reduction Stations to reduce Energy loss,” J. Heat Mass Transf. Res., vol. 7, no. 2, pp. 143–154, (2020).
[6] Mokhatab S.and Poe W. A., Handbook of natural gas transmission and processing. Gulf professional publishing, (2012).
[7] Baker R. C., “Turbine flowmeters: II. Theoretical and experimental published information,” Flow Meas. Instrum., vol. 4, no. 3, pp. 123–144, doi: https://doi.org/10.1016/0955-5986(93)90048-N, (1993).
[8] Fang Z., Su R., Hu L., and Fu X., “A simple and easyimplemented time-of-flight determination method for liquid ultrasonic flow meters based on ultrasonic signal onset detection and multiplezero-crossing technique,” Measurement, vol. 168, p. 108398, doi: https://doi.org/10.1016/j.measurement.2020.108398, (2021).
[9] Cornell O., Kobayashi R., Poettmann F. T., Vary J. A., Elenbaas J. R., and Weinaug G. F., “Handbook of Natural Gas Engineering.” McGraw-Hill, New York, (1959).
[10] M. W. J. and Farroll S., “No TitleDevelopment of a turbine meter for two-phase flow measurement in vertical pipes,” Flow Meas. Instrum., vol. 6, no. 0955–5986, pp. 279–282, (1995).
[11] Parvizi S., Arabkoohsar A., and Farzaneh-Gord M., “Natural gas compositions variation effect on
capillary tube thermal mass flow meter performance,” Flow Meas. Instrum., vol. 50, pp. 229–236, doi: 10.1016/j.flowmeasinst.2016.07.007, (2016).
[12] Johnson M. W. and Farroll S., “Development of a turbine meter for two-phase flow measurement in vertical pipes,” Flow Meas. Instrum., vol. 6, no. 4, pp. 279–282, doi: https://doi.org/10.1016/0955-5986(95)00015-1,(1995).
[13] Cascetta F. and Rotondo G., “Effects of intermittent flows on turbine gas meters accuracy,” Measurement, vol. 69, pp. 280–286, doi: https://doi.org/10.1016/j.measurement.2015.02.008, (2015).
[14] E. AGA8-DC92, “Compressibility and super compressibility for natural gas and other hydrocarbon gases,” Transm. Meas. Comm. Rep., no. 8.
 [15] IGS-E-EL-032, Explosion Proof Electrical Equipments Layout in Risk Area for Pressure Reduction stations and Metering stations. (1396).
[16] I. 9951, Turbine meter Used for the measurement of in closed conduits. (1993).
[17] Heydari A. and Rahbar N., “Energy and life cost analysis of a wet wall solar still with various pump working conditions,” Environ. Prog. Sustain. Energy, vol. 36, no. 2, pp. 532–538, (2017).
[18] Rahbar N., Asadi A., and Fotouhi-Bafghi E., “Performance evaluation of two solar stills of different geometries: Tubular versus triangular: Experimental study, numerical simulation, and second law analysis,” Desalination, vol. 443, doi: 10.1016/j.desal.2018.05.015, (2018).
[19] Zabihi A. and Taghizadeh M., “Feasibility study on energy recovery at Sari-Akand city gate station using turboexpander,” J. Nat. Gas Sci. Eng., vol. 35, pp. 152–159, doi: 10.1016/j.jngse.2016.08.054, (2016).