ربات‌های موازی کابلی؛ انواع و کاربردها

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک دانشگاه صنعتی شیراز

2 استادیار دانشکدة مهندسی مکانیک و هوافضا دانشگاه صنعتی شیراز

چکیده

ربات‌های موازی کابلی[i] ویژگی‌های منحصر بفردی دارند و برای اهدافی چون تعمیر و نگه‌داری در لنگرگاه‌ها و آشیانة هواپیما‌ها، حمل‌ونقل، انجام عملیات جوشکاری، بازبینی خطوط لوله و رادیوتلسکوپ‌ها و نظایر آنها به‌کار می‌روند. امروزه ویژگی‌هایی چون وسعت فضای‌ کاری، قابلیت مونتاژ و دمونتاژ سریع، اینرسی کم قسمت‌های متحرک و حمل‌ونقل آسان از یک‌سو، و هزینة ساخت و نگه‌داری اندک از سوی دیگر سبب شده است تا این گروه از ربات‌ها مورد توجه بسیار قرار بگیرند و کاربردهای گسترده‌ای پیدا کنند. در این مقاله سعی شده است تا ضمن معرفی ربات‌های کابلی و انواع آن، کاربردهای این دسته از ربات‌ها تشریح گردد.



[i]. parallel cable-based robots

کلیدواژه‌ها


[1] Bruckmann T., A. Pott. Cable-Driven Parallel Robots, The proceedings of the First International Conference on Cable Robot, Springer, 2013, Germany, Vol. 12, p. vii.

[2] Behzadpour S., A. Khajepour. “A New Cable-Based Parallel Robot with Three Degrees of Freedom.” Multibody System Dynamics, 2005, Vol. 13, pp. 371-383.

[3] Pott A. Cable-driven parallel robot for automated handling of components in all dimensions, In: Fraunhofer Institute for Manufacturing Engineering and Automation, Brochure 300/354e, Stuttgart 2010.

[4] Roberts R., T. Graham, T. Lippitt. “On the inverse kinematics, statics, and fault tolerance of cable-suspended robots.” Journal of Robotic Systems, 1998, Vol. 15, No. 10, pp. 581–597.

[5] Verhoeven R., “Analysis of the Workspace of Tendon-Based Stewart Platforms,” Ph.D. thesis, University of Duisburg-Essen, 2004.

[6] Bosscher P., I. Ebert-Uphoff, P. A. Voglewed. On the Connections between Cable-Driven Robots, Parallel Manipulators and Grasping.” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2004, New Orleans, pp. 4521-4526.

[7] Ghosal A., B. Ravani, Differential geometric analysis of singularities of point trajectories if serial and parallel manipulators, Sept.13-16, 1998, Atlanta, Georgia, USA.

[8] Morizono T., K. Kurahashi, S. Kawamura. “Realization of a virtual sports training system with parallel wire mechanism.” Proceedings of IEEE Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997, pp. 3025–3030.

[9] Williams II, R.L. “Cable–suspended haptic interface.” Journal of Virtual Reality, 3(3), 1998, pp. 13-21.

[10] Homma K., O. Fukuda, Y. Nagata. “Study of a wire-driven leg rehabilitation system.” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2002, Lausanne, Switzerland, pp. 1451–1456.

[11] Albus J., R. Bostelman, N. Dagalakis. “The NIST Robocrane.” Journal of Robotic Systems, 1993, Vol. 97, No. 3, pp. 709-724.

[12] Landsbergera S. E., T. B.Sheridan. “A new design for parallel link manipulator.” IEEE Proceedings of the International Conference on Cybernetics and Society, 1985, pp. 14-812.

[13] National Institute of Standards and Technology (NIST), RoboCrane Project, http://www.nist.gov/el/isd accessed October 20, 2012.

[14] Hiller M., S. Fang, S. Mielczarek, R. Verhoeven, and D. Franitza. “Design, analysis and realization of tendon-based parallel manipulators.” Mechanism and Machine Theory, 40, 2005, pp. 429-445.

[15] Verhoeven R., M. Hiller. “Estimating the controllable workspace of tendonbased Stewart platforms.” Proceedings of the ARK’00: 7th International Symposium on Advances in Robot Kinematics, 2000, Portoroz, Slovenia, pp. 277–284.

[16] Mikelsons L., T. Bruckmann, M. Hiller, D. Schramm. “A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators.” Proceedings on IEEE International Conference on Robotics and Automation, 2008, pp. 3869-3874.

[17] Hiller M., S. Fang, C. Hass, T. Bruckmann. “Analysis, realization and application of the tendon-based parallel robot segesta,” In Last, P., Budde, C., and Wahl, F., editors,  Robotic Systems for Handling and Assembly, volume 2 of International Colloquium of the Collaborative Research Center SFB 562,  2005, Braunschweig, Germany. Aachen, Shaker Verlag, pp. 185–202.

[18] SkyCam at Stanford, http://upload.wikimedia.org accessed June 2, 2013.

[19] Surdilovic D., R. Bernhardt, “STRING MAN: a New Wire-Robot Gait Rehabilitation.” Proceeding of the IEEE, International Conference on Robotics and Automation (ICRA), New Orleans, 2004, pp. 2031-2036.

[20] Homma K., O. Fukuda, Y. Nagata, J. Sugawara, M. Usuba. “A Wire-Driven Leg Rehabilitation System: Development of a 4-D.O.F. Experimental System.” Proceedings of the 2003 IEEWASME International Conference on Advanced Inteligent Mechatronics (AIM 2003), 2003, pp. 1668-1673.

[21] Rosati G., P. Gallina, S. Masiero, A. Rossi. “Design of a New 5 D.O.F. Wire-Based Robot for Rehabilitation.” proceeding of the 2005 IEEE, 9th International Conference on Rehabilitation Robotics, Chicago, 2005, pp. 430-433.

[22] Aghazadeh F. “Evaluation of Suited and Unsuited Human Functional Strength using Multi Purpose, Multiaxial Isokinetic Dynamometer”, Final Report of NASA Faculty Fellowship Program of 2004, Johnson Space Center, 2004.

[23] Zheng Y., Q. Lin, X. Liu. “A Wire-Driven Parallel Suspension System with 8 Wires (WDPSS-8) for Low-Speed Wind Tunnels.” Robot Manipulators Trends and Development, 2010.