تخمین ضرایب آیرودینامیکی هواپیما با روش حداقل مربعات بهبود یافته بر مبنای داده های آزمایشی

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز

چکیده

این مقاله با هدف بررسی پایداری و تخمین ضرایب آیرودینامیکی هواپیما بر مبنای داده‌ های پرواز آزمایشی تهیه شده است. روش حداقل مربعات پیشنهادی برای تخمین این ضرایب با استفاده از داده ‌های واحد اندازه ‌گیری اینرسی (IMU) و سامانه موقعیت ‌یاب جهانی (GPS) مورد استفاده قرار گرفته است. این پژوهش برای نخستین ‌بار تخمین این ضرایب را بر روی یک هواپیمای بال بالا و در مانورهای پروازی مختلف اعم از: بلند شدن، نشستن، انواع گردش‌ ها و با بهره ‌گیری از داده‌ های پاسخ زمانی و فرکانسی مبتنی بر داده ‌های پرواز حقیقی اجرا کرده است. در این مقاله تطابق مسیر پروازی ضبط شده هواپیما با مسیر پروازی رسم شده از خروجی نرم ‌افزار MATLAB ارزیابی شده است و خروجی مدل تطابق مسیر پروازی را تأیید کرده است. همچنین، برای بهبود تخمین ضرایب آیرودینامیکی، تغییری در روش حداقل مربعات با استفاده از ورودی ‌های گذشته برای تخمین یک مقدار اعمال شده است. روش توضیح داده شده در این مقاله در ۵ آزمایش با استفاده از داده‌ های پروازی واقعی از هواپیما ارزیابی شده است. در نهایت، حداکثر خطای تخمین ایجاد شده توسط روش بهبود یافته 7/6 % است که مربوط به ضریب ممان پیچشی بوده است.این مقاله با هدف بررسی پایداری و تخمین ضرایب آیرودینامیکی هواپیما بر مبنای داده‌ های پرواز آزمایشی تهیه شده است. روش حداقل مربعات پیشنهادی برای تخمین این ضرایب با استفاده از داده ‌های واحد اندازه ‌گیری اینرسی (IMU) و سامانه موقعیت ‌یاب جهانی (GPS) مورد استفاده قرار گرفته است. این پژوهش برای نخستین ‌بار تخمین این ضرایب را بر روی یک هواپیمای بال بالا و در مانورهای پروازی مختلف اعم از: بلند شدن، نشستن، انواع گردش‌ ها و با بهره ‌گیری از داده‌ های پاسخ زمانی و فرکانسی مبتنی بر داده ‌های پرواز حقیقی اجرا کرده است. در این مقاله تطابق مسیر پروازی ضبط شده هواپیما با مسیر پروازی رسم شده از خروجی نرم ‌افزار MATLAB ارزیابی شده است و خروجی مدل تطابق مسیر پروازی را تأیید کرده است. همچنین، برای بهبود تخمین ضرایب آیرودینامیکی، تغییری در روش حداقل مربعات با استفاده از ورودی ‌های گذشته برای تخمین یک مقدار اعمال شده است. روش توضیح داده شده در این مقاله در ۵ آزمایش با استفاده از داده‌ های پروازی واقعی از هواپیما ارزیابی شده است. در نهایت، حداکثر خطای تخمین ایجاد شده توسط روش بهبود یافته 7/6 % است که مربوط به ضریب ممان پیچشی بوده است.

کلیدواژه‌ها


 
[1]           S. Johnson et al., "Are They What They Claim: A Comprehensive Study of Ordinary Linear Regression Among the Top Machine Learning Libraries in Python," 2023. [Online]. Available: https://kdd.org/kdd2023/wp-content/uploads/2023/08/johnson2023are.pdf.
 
[2]           F. Yang, "The Least Squares Finite Element Method for Elasticity Interface Problem on Unfitted Mesh," arXiv preprint arXiv:2306.08801, 2023, doi: https://doi.org/10.1016/j.cma.2020.112902.
 
[3]           Z. Cai, B. Chen, and J. Yang, "Adaptive Least-Squares Methods for Convection-Dominated Diffusion-Reaction Problems," arXiv preprint arXiv:2301.11582, 2023, doi: https://doi.org/10.48550/arXiv.2301.11582.
 
[4]           E. Lee and H. Na, "Dual least‐squares finite element method with stabilization," Numerical Methods for Partial Differential Equations, 2023, doi: https://doi.org/10.1002/num.22996.
 
[5]           M. R. Sajjadi and A. Emadian, "Estimation of  aerodynamic coefficients of a high wing aircraft using the least squares method with delayed data and comparison with the ordinary least squares method," presented at the The second conference of electricity, mechanics, aerospace, computer and engineering sciences, Sydney - Ausralia, 16 Jun 2023, 2023. [Online]. Available: https://civilica.com/doc/1680438/.
 
[6]           Q. Zhang, J. Wang, H. Zhang, and C. Jia, "Research on quantitative evaluation method of test flight risk based on fuzzy theory," in International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2022), 2023, vol. 12604: SPIE, pp. 1114-1122, doi: https://doi.org/10.1117/12.2674598.
 
[7]           B. Pamuk, "Agile Methods on Flight Tests," in 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), 2023: IEEE, pp. 01-05, doi: https://doi.org/10.1109/RAST57548.2023.10197997.
 
[8]           G. Xing et al., "Analysis of Human Factors in Typical Accident Tests of Certain Type Flight Simulator," Sustainability, vol. 15, no. 3, p. 2791, 2023, doi: https://doi.org/10.3390/su15032791.
 
[9]           C. Kownacki et al., "Precision landing tests of tethered multicopter and VTOL UAV on moving landing pad on a lake," Sensors, vol. 23, no. 4, p. 2016, 2023, doi: https://doi.org/10.3390/s23042016.
 
[10]         D. Aláez, X. Olaz, M. Prieto, J. Villadangos, and J. Astrain, "VTOL UAV digital twin for take-off, hovering and landing in different wind conditions," Simulation Modelling Practice and Theory, vol. 123, p. 102703, 2023, doi: https://doi.org/10.1016/j.simpat.2022.102703.
 
[11]         A. Kumar and A. Ghosh, "Regularization regression methods for aerodynamic parameter estimation from flight data," Aircraft Engineering and Aerospace Technology, vol. 95, no. 5, pp. 820-830, 2023, doi: https://doi.org/10.1108/AEAT-09-2019-0179.
 
[12]         G. Dai, L. Cheng, D. Li, H. Ma, and L. Zhang, "Identification of Aerodynamic Parameters Based on Maximum Likelihood Estimation," in 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), 2022: IEEE, pp. 923-929, doi: https://doi.org/10.1109/ICNISC57059.2022.00186.
 
[13]         L. Wang, R. Zhao, and Y. Zhang, "Aircraft Lateral-Directional Aerodynamic Parameter Identification and Solution Method Using Segmented Adaptation of Identification Model and Flight Test Data," Aerospace, vol. 9, no. 8, p. 433, 2022, doi: https://doi.org/10.3390/aerospace9080433.
 
[14]         H. Verma and N. Peyada, "Estimation of longitudinal aerodynamic parameters using recurrent neural network," The Aeronautical Journal, vol. 127, no. 1308, pp. 255-267, 2023, doi: https://doi.org/10.1017/aer.2020.95.
 
[15]         J. Wang, D. Wang, and Y. Zhang, "Research on Aerodynamic Modeling of Axisymmetric Aircraft Based on Orthogonal Least Squares," in Journal of Physics: Conference Series, 2022, vol. 2252, no. 1: IOP Publishing, p. 012041, doi: https://doi.org/10.1088/1742-6596/2252/1/012041.
 
[16]         R. C. Nelson, Flight stability and automatic control. WCB/McGraw Hill New York, 1998.https://home.engineering.iastate.edu/~shermanp/AERE355/lectures/Flight_Stability_and_Automatic_Control_N.pdf.
 
[17]         S. Carnduff, "Aircraft System Identification: Theory and Practice V. Klein and EA Morelli American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344, USA. 2006. 484pp. Illustrated. 119.95 (non-members). ISBN 1-56347-832-3," The Aeronautical Journal, vol. 111, no. 1123, pp. 602-603, 2007, doi: https://doi.org/10.1017/S0001924000087194.
 
[18]         R. K. Mehra, D. E. Stepner, and J. S. Tyler, "Maximum likelihood identification of aircraft stability and control derivatives," Journal of Aircraft, vol. 11, no. 2, pp. 81-89, 1974, doi: https://doi.org/10.2514/3.60327.
 
[19]         V. Klein, "Estimation of aircraft aerodynamic parameters from flight data," Progress in Aerospace Sciences, vol. 26, no. 1, pp. 1-77, 1989, doi: https://doi.org/10.1016/0376-0421(89)90002-X.
 
[20]         R. E. Maine and K. W. Iliff, "Application of parameter estimation to aircraft stability and control: The output-error approach," 1986. [Online]. Available: https://ntrs.nasa.gov/api/citations/19870020066/downloads/19870020066.pdf.
 
[21]         A. A. Giordano and F. M. Hsu, Least square estimation with applications to digital signal processing. John Wiley & Sons, Inc., 1985. https://dl.acm.org/doi/abs/10.5555/577191.
 
[22]         V. Klein, "Aircraft parameter estimation in frequency domain," in 4th Atmospheric Flight Mechanics Conference, 1978, p. 1344, doi: https://doi.org/10.2514/6.1978-1344.
 
[23]         R. E. Maine and K. W. Iliff, "The theory and practice of estimating the accuracy of dynamic flight-determined coefficients," 1981.https://ntrs.nasa.gov/citations/19810019327.
 
[24]         J.-H. Kim and S. Sukkarieh, "Airborne simultaneous localisation and map building," in 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), 2003, vol. 1: IEEE, pp. 406-411, doi: https://doi.org/10.1109/ROBOT.2003.1241629.