بررسی عددی اثر نانولوله ‌های کربنی بر خواص مکانیکی و رفتار شکست نانوکامپوزیت پلیمری با استفاده از مدل الیاف ناپیوسته

نوع مقاله : علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، واحد خرم آباد، دانشگاه آزاد اسلامی، خرم آباد

2 کارشناسی ارشد، گروه مهندسی مکانیک، واحد خرم آباد، دانشگاه آزاد اسلامی، خرم آباد

چکیده

استفاده از مدل‌ های تجربی و شبه تجربی برای مدل کردن خواص نانوکامپوزیت ‌ها به ‌منظور پیش ‌بینی خواص مکانیکی و شکست آن ها می ‌تواند به کاهش هزینه و زمان و طراحی بهینه آن ‌ها منجر شود. در این پژوهش به ‌منظور مدل ‌کردن خواص مکانیکی و رفتار شکست نانوکامپوزیت پلیمری تقویت شده با نانولوله ‌های کربنی در درصدهای حجمی 5/0 درصد، 75/0 درصد و 1 درصد از مدل الیاف ناپیوسته (کوتاه) استفاده شده است. مدل الیاف ناپیوسته در پژوهش‌ های پیشین برای مدل ‌کردن خواص کامپوزیت ‌ها با الیاف تقویت ‌کننده ناپیوسته در مقیاس ماکرو مورد استفاده قرار گرفته است که با توجه ‌به هندسه استوانه ‌ای ‌شکل نانولوله ‌ها، از این روش در کار حاضر استفاده شده است، همچنین با استفاده از این مدل و نیز مدل توزیع تصادفی نانولوله ‌ها در ماتریس اپوکسی شبیه ‌سازی اجزای محدود خواص مکانیکی و رفتار شکست در مقیاس نانو و مزو با بهره‌ گیری از برنامه ‌نویسی زبان پایتون انجام ‌گرفته است.

کلیدواژه‌ها

موضوعات


[1] S. Fu, Z. Sun, P. Huang, Y. Li, and N. Hu, "Some basic aspects of polymer nanocomposites: A critical review," Nano Materials Science, vol. 1, no. 1, pp. 2-30, 2019.   DOI: https://doi.org/10.1016/j.nanoms.2019.02.006.
 
[2] Z. U. Haq Khan et al., "Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery," Frontiers in Chemistry, vol. 11, p. 1152217, 2023.   DOI: 10.3389/fchem.2023.1152217.
 
[3] D. Venkatesan, J. Aravind Kumar, and R. Mohana Prakash, "Synthesis, Properties, and Applications of Polymer Nanocomposite Matrices," Handbook of Polymer and Ceramic Nanotechnology, pp. 465-485, 2021.   DOI: https://doi.org/10.1007/978-3-030-10614-0_65-1.
 
[4] M. S. Darwish, M. H. Mostafa, and L. M. Al-Harbi, "Polymeric nanocomposites for environmental and industrial applications," International Journal of Molecular Sciences, vol. 23, no. 3, p. 1023, 2022.   DOI: https://doi.org/10.3390/ijms23031023.
 
[5] M. A. Maghsoudlou, R. B. Isfahani, S. Saber-Samandari, and M. Sadighi, "Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations," Composites Part B: Engineering, vol. 175, p. 107119, 2019.   DOI: https://doi.org/10.1016/j.compositesb.2019.107119.
 
 [6] p. Mohsenzadeh mobarakeh, H. Golestanian, and Y. tadi beni, "Investigating the effects of length, diameter and chirality on the mechanical properties of defective carbon nanotubes," Iranian Journal of Mechanical Engineering Transactions of ISME, vol. 21, no. 1, pp. 188-217, 2019. DOI: 10.30506/IJMEP.2021.526938.1774.
 
[7] M. Dastmard, R. Ansari, and S. Rouhi, "Prediction of axial Young's modulus of epoxy matrix reinforced by group-IV nanotube: A finite element investigation," Mechanics of Materials, vol. 157, p. 103819, 2021.   DOI: https://doi.org/10.1016/j.mechmat.2021.103819.
 
[8] R. Yazdanparast and R. Rafiee, "Investigating the influence of pull-out speed on the interfacial properties and the pull-out behavior of CNT/polymer nanocomposites," Composite Structures, vol. 316, p. 117049, 2023.   DOI: https://doi.org/10.1016/j.compstruct.2023.117049.
 
[9] M. J. S. Zuberi and V. Esat, "Investigating the mechanical properties of single walled carbon nanotube reinforced epoxy composite through finite element modelling," Composites Part B: Engineering, vol. 71, pp. 1-9, 2015.   DOI: https://doi.org/10.1016/j.compositesb.2014.11.020.
 
[10]         A. Alian, S. Kundalwal, and S. Meguid, "Multiscale modeling of carbon nanotube epoxy composites," Polymer, vol. 70, pp. 149-160, 2015.   DOI: https://doi.org/10.1016/j.compstruct.2015.06.014.
 
[11]         G. Arora and H. Pathak, "Modeling of transversely isotropic properties of CNT-polymer composites using meso-scale FEM approach," Composites Part B: Engineering, vol. 166, pp. 588-597, 2019.   DOI: https://doi.org/10.1016/j.compositesb.2019.02.061.
 
[12]         A. Negi, G. Bhardwaj, J. Saini, and N. Grover, "Crack growth analysis of carbon nanotube reinforced polymer nanocomposite using extended finite element method," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, no. 5, pp. 1750-1770, 2019.   DOI: https://doi.org/10.1177/0954406218776034.
 
[13]         A. Esmaeili et al., "An experimental and numerical investigation of highly strong and tough epoxy based nanocomposite by addition of MWCNTs: Tensile and mode I fracture tests," Composite Structures, vol. 252, p. 112692, 2020.   DOI: https://doi.org/10.1016/j.compstruct.2020.112692.
[14]         G. T. Truong and K.-K. Choi, "Effect of short multi-walled carbon nanotubes on the mode I fracture toughness of woven carbon fiber reinforced polymer composites," Construction and Building Materials, vol. 259, p. 119696, 2020.   DOI: https://doi.org/10.1016/j.conbuildmat.2020.119696.
 
[15]         M. Ahmadi, R. Ansari, and H. Rouhi, "Studying buckling of composite rods made of hybrid carbon fiber/carbon nanotube reinforced polyimide using multiscale FEM," Scientia Iranica, vol. 0, no. 0, pp. 0-0, 2018.   DOI: 10.24200/sci.2018.5722.1444.
 
[16]         I. Charitos, A. Drougkas, and E. Kontou, "Prediction of the elastic modulus of LLDPE/CNT nanocomposites by analytical modeling and finite element analysis," Materials Today Communications, vol. 24, p. 101070, 2020.   DOI: https://doi.org/10.1016/j.mtcomm.2020.101070.
 
[17]         H. Shin, "Multiscale model to predict fracture toughness of CNT/epoxy nanocomposites," Composite Structures, vol. 272, p. 114236, 2021.     DOI:10.1016/j.mtcomm.2020.101070.
 
[18]         N. Shirodkar, S. Cheng, and G. D. Seidel, "Enhancement of Mode I fracture toughness properties of epoxy reinforced with graphene nanoplatelets and carbon nanotubes," Composites Part B: Engineering, vol. 224, p. 109177, 2021.   DOI: https://doi.org/10.1016/j.compositesb.2021.109177.
 
[19]         T. Xu, Z. Qi, Y. Tan, J. Tian, and X. Li, "Effect of multiwalled carbon nanotube diameter on mechanical behavior and fracture toughness of epoxy nanocomposites," Materials Research Express, vol. 8, no. 1, p. 015014, 2021.   DOI: 10.1088/2053-1591/abd864.
 
[20]         K. Bhowmik et al., "Influence of multiwalled carbon nanotube on progressive damage of epoxy/carbon fiber reinforced structural composite," Polymer Composites, vol. 43, no. 11, pp. 7751-7772, 2022. DOI: 10.1002/pc.26877.
 
[21]         S. Tamayo-Vegas, A. Muhsan, C. Liu, M. Tarfaoui, and K. Lafdi, "The effect of agglomeration on the electrical and mechanical properties of polymer matrix nanocomposites reinforced with carbon nanotubes," Polymers, vol. 14, no. 9, p. 1842, 2022.   DOI: https://doi.org/10.3390/polym14091842.
 
[22]         Z. Song, Y. Li, A. Carpinteri, S. Wang, and B. Yang, "Interphase elastic properties of carbon nanotube-epoxy composites and their application in multiscale analysis," Materials & Design, vol. 221, p. 110996, 2022.   DOI: https://doi.org/10.1016/j.matdes.2022.110996.
 
[23]         M. C. Maurya, S. Jawaid, and A. Chakrabarti, "Flexural Behaviour of Nanocomposite Plate with CNT Distribution and Agglomeration Effect," Mechanics Of Advanced Composite Structures, vol. 10, no. 1, pp. 123-136, 2023.   DOI: 10.22075/MACS.2022.28078.1426.
 
[24]         R. H. Alasfar, S. Ahzi, N. Barth, V. Kochkodan, M. Khraisheh, and M. Koç, "A review on the modeling of the elastic modulus and yield stress of polymers and polymer nanocomposites: effect of temperature, loading rate and porosity," Polymers, vol. 14, no. 3, p. 360, 2022.   DOI: 10.3390/polym14030360.
 
[25]         P. Curtis, M. Bader, and J. Bailey, "The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibres," Journal of Materials Science, vol. 13, pp. 377-390, 1978.   DOI: 10.1016/j.mtcomm.2020.101070.
 
[26]         M. Maalej, V. C. Li, and T. Hashida, "Effect of fiber rupture on tensile properties of short fiber composites," Journal of engineering mechanics, vol. 121, no. 8, pp. 903-913, 1995.   DOI: https://doi.org/10.1061/(ASCE)0733-9399(1995)121:8(903).
 
[27]         S. Kareem, L. S. Al-Ansari, and L. A. Gömze, "Modeling of Modulus of elasticity of Nano-Composite Materials: Review and Evaluation," in Journal of Physics: Conference Series, 2022, vol. 2315, no. 1, p. 012038: IOP Publishing.
 
[28]         ""Python 2.7.3. Pyton Software Foundation"," ed, 2012.