تأثیر تیغه بدنه دارای توبرکل بر کاهش توان مصرفی شناور کانتینربر در حالت خودرانش

نوع مقاله : علمی پژوهشی

نویسندگان

1 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

2 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران

چکیده

با توجه به اهمیت روزافزون انتشارات آلاینده در حمل و نقل دریایی و ضرورت کاهش مصرف سوخت کشتی ‌ها، تلاش‌ هایی به عمل آمده است تا این مسئله مورد توجه قرار گیرد. به تازگی، تیغه بدنه که به عنوان یک دستگاه ذخیره انرژی در ناحیه پاشنه کشتی نصب شده و مقاومت را کاهش می‌ دهد، معرفی شده است. به علاوه، مطالعاتی بر روی استفاده از برآمدگی در لبه حمله هیدروفویل (توبرکل) نیز از موضوعات درحال بررسی است. هدف از این مطالعه ارزیابی تأثیر تیغه بدنه با و بدون توبرکل بر ضریب مقاومت کل و ضرایب پروانه در شرایط خودرانش است، همچنین تأثیر آنها بر مصرف انرژی کشتی مورد بررسی قرار می گیرد. نتایج نشان می‌ دهند که برای کشتی ‌ای که دارای تیغه بدنه با لبه‌ حمله صاف است، ضریب مقاومت کل 77/1%، ضریب تراست 853/2% و ضریب گشتاور 14/1% نسبت به کشتی بدون تیغه بدنه کاهش یافته است. علاوه بر این، برای کشتی ‌ای که دارای تیغه بدنه با توبرکل‌ های لبه‌ حمله است، این ضرایب به ترتیب 85/1%، 488/3% و 94/1% کاهش یافته‌اند. علاوه بر این، مصرف انرژی در کشتی دارای تیغه بدنه با توبرکل‏ های لبه‌ حمله نسبت به کشتی دارای تیغه بدنه معمولی 789/% کاهش یافته است.

کلیدواژه‌ها

موضوعات


[1] B. Bouckaert, K. Uithof, N. Moerke, and P. Van Oossanen, "Hull Vane on 108m Holland-Class OPVs: Effects on Fuel Consumption and Seakeeping," in Proceeding of MAST Conference, 2015. https://www.hullvane.com/wp-content/uploads/2017/01/MAST-2016-Paper-Hull-Vane-on-108-m-Holland-Class-OPV-effects-on-fuel-consumption-and-seakeeping-1.pdf.
 
[2] I. Andrews, V. K. Avala, P. K. Sahoo, and S. Ramakrishnan, "Resistance characteristics for high-speed hull forms with vanes," in SNAME International Conference on Fast Sea Transportation, 2015: SNAME, p. D011S003R001, https://doi.org/10.5957/FAST-2015-012.
 
[3] H. Hou, M. Krajewski, Y. K. Ilter, S. Day, M. Atlar, and W. Shi, "An experimental investigation of the impact of retrofitting an underwater stern foil on the resistance and motion," Ocean Engineering, vol. 205, p. 107290, 2020, https://doi.org/10.1016/j.oceaneng.2020.107290.
 
[4] K. Suastika, A. Hidayat, and S. Riyadi, "Effects of the application of a stern foil on ship resistance: A case study of an Orela crew boat," International Journal of Technology, vol. 8, no. 7, pp. 1266-1275, 2017, https://doi.org/10.14716/ijtech.v8i7.691.
 
[5] V. K. Avala, "CFD Analysis of Resistance Characteristics of High-Speed Displacement Hull Forms fitted with Hull Vane®," 2017. https://repository.fit.edu/etd/1127/.
 
[6] M. A. Budiyanto, M. A. Murdianto, and M. F. Syahrudin, "Study on the resistance reduction on high-speed vessel by application of stern foil using cfd simulation," CFD Letters, vol. 12, no. 4, pp. 35-42, 2020. https://scholar.ui.ac.id/en/publications/study-on-the-resistance-reduction-on-high-speed-vessel-by-applica.
 
[7] U. Budiarto and A. Firdhaus, "Analysis of the effect of hull vane on ship resistance using CFD methods," in IOP Conference Series: Earth and Environmental Science, 2021, vol. 649, no. 1: IOP Publishing, p. 012051, , DOI: 10.1088/1755-1315/649/1/012051.
 
[8] F. E. Fish, L. E. Howle, and M. M. Murray, "Hydrodynamic flow control in marine mammals," Integrative and comparative biology, vol. 48, no. 6, pp. 788-800, 2008, https://doi.org/10.1093/icb/icn029.
 
[9] J. Hain, G. Carter, S. Kraus, C. Mayo, and H. Winn, "Megaptera Novaeangliae, in the Western North Atlantic," Fish Bull, vol. 80, p. 259, 1982 https://books.google.com/books.
 
[10]         F. E. Fish, P. W. Weber, M. M. Murray, and L. E. Howle, "The tubercles on humpback whales' flippers: application of bio-inspired technology," ed: Oxford University Press, 2011, https://doi.org/10.1093/icb/icr016.
 
[11]         F. E. Fish and J. M. Battle, "Hydrodynamic design of the humpback whale flipper," Journal of morphology, vol. 225, no. 1, pp. 51-60, 1995, https://doi.org/10.1002/jmor.1052250105.
 
[12]         R. S. Shevell, "Aerodynamic anomalies-Can CFD prevent or correct them?," Journal of Aircraft, vol. 23, no. 8, pp. 641-649, 1986, https://doi.org/10.2514/3.45356.
 
[13]         P. Watts and F. E. Fish, "The influence of passive, leading edge tubercles on wing performance," in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol, 2001: Auton. Undersea Syst. Inst. Durham New Hampshire. http://www.appliedfluids.com/UUST01.pdf.
 
[14]         E. G. Paterson, R. V. Wilson, and F. Stern, "General-purpose parallel unsteady RANS ship hydrodynamics code: CFDSHIP-IOWA," IIHR report, vol. 432, 2003, https://doi.org/10.5957/FAST-2015-012.
 
[15]         F. Fish and G. V. Lauder, "Passive and active flow control by swimming fishes and mammals," Annu. Rev. Fluid Mech., vol. 38, pp. 193-224, 2006, https://doi.org/10.1146/annurev.fluid.38.050304.092201.
 
[16]         F. E. Fish, "Biomimetics and the application of the leading-edge tubercles of the humpback whale flipper," Flow control through bio-inspired leading-edge tubercles: morphology, aerodynamics, hydrodynamics and applications, pp. 1-39, 2020, https://doi.org/10.1007/978-3-030-23792-9_1.
 
[17]         D. Miklosovic, M. Murray, L. Howle, and F. Fish, "Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers," Physics of fluids, vol. 16, no. 5, pp. L39-L42, 2004, https://doi.org/10.1063/1.1688341.
 
[18]         F. Fish, "The humpback whale flipper for application of bio-inspired tubercle technology," in INTEGRATIVE AND COMPARATIVE BIOLOGY, 2011, vol. 51: OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, pp. E42-E42, https://doi.org/10.1093/icb/icr016.
 
[19]         J. Kim, "Experimental Data for KCS Resistance, Sinkage, Trim, and Self-propulsion," in Numerical Ship Hydrodynamics: An Assessment of the Tokyo 2015 Workshop, 2021: Springer, pp. 53-59, https://doi.org/10.1007/978-3-030-47572-7_3.
 
[20]         I. R. Procedures, "Uncertainty analysis in CFD verification and validation, methodology and procedures," ITTC Recommended Procedures and Guidelines, pp. 7.5-03, 2017. https://www.ittc.info/media/8153/75-03-01-01.pdf.
 
[21]         F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson, "Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures," J. Fluids Eng., vol. 123, no. 4, pp. 793-802, 2001, https://doi.org/10.1115/1.1412235.
 
[22]         A. Hasanvand, A. Hajivand, and N. A. Ali, "Investigating the effect of rudder profile on 6DOF ship course-changing performance," Applied Ocean Research, vol. 117, p. 102944, 2021, https://doi.org/10.1016/j.apor.2021.102944.