بررسی اثر زاویه پره بر عملکرد مخازن اختلاط

نوع مقاله : علمی پژوهشی

نویسندگان

1 دکتری مهندسی شیمی، مرکز پژوهش و توسعه فناورانه مهندسی مکانیک، گروه شرکت‌های ایبکو، کرمان

2 کارشناسی‌ ارشد مهندسی مکانیک، مرکز پژوهش و توسعه فناورانه مهندسی مکانیک، گروه شرکت‌های ایبکو، کرمان

3 دانشیار، دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان

چکیده

در این پژوهش تاثیر زاویه پره بر توزیع جریان دو فازی (جامد-مایع) در مخزن همزن ‌دار دارای پروانه جریان محوری (PBT) با استفاده از دینامیک سیالات محاسباتی شبیه‌ سازی شد. مدل جریان آشفته k-ε استاندارد همراه با مدل چند فازی اولری-اولری (E-E) برای شبیه سازی جریان دو فازی استفاده شد.  خواص جریان دو فازی در امتداد محور مخزن با داده های موجود در ادبیات اعتبارسنجی و تطابق خوبی مشاهده شد. در ادامه تاثیر زاویه پره بر شرایط هیدرودینامیکی جریان سیال درون مخزن و همچنین توزیع کسر حجمی فاز جامد مورد بررسی قرار گرفت. نتایج نشان داد، حداکثر مولفه‌ی سرعت شعاعی با افزایش زاویه پره از 45 به 75 درجه نسبت به افق، به مقدار 6/45% افزایش می‌ یابد. همچنین مشاهده گردید، با افزایش زاویه پره در سرعت همزنی ثابت، میزان توان مورد نیاز برای اختلاط به 17/2 برابر افزایش می ‌یابد.

کلیدواژه‌ها

موضوعات


[1] F. K. Crundwell, "Progress in the mathematical modelling of leaching reactors," Hydrometallurgy, vol. 39, no. 1, pp. 321-335, 1995/10/01/ 1995, doi: 10.1016/0304-386X(95)00039-J.
 
[2] R. S. S. Raja Ehsan Shah, B. Sajjadi, A. A. Abdul Raman, and S. Ibrahim, "Solid-liquid mixing analysis in stirred vessels," vol. 31, no. 2, pp. 119-147, 2015, doi: 10.1515/revce-2014-0028.
 
[3] L. Xie and Z.-H. Luo, "Modeling and simulation of the influences of particle-particle interactions on dense solid–liquid suspensions in stirred vessels," Chemical Engineering Science, vol. 176, pp. 439-453, 2018/02/02/ 2018, doi: 10.1016/j.ces.2017.11.017.
 
[4] L. Li and B. Xu, "Numerical analysis of hydrodynamics characteristics in a top-covered unbaffled stirred tank," Chemical Papers, vol. 75, pp. 5873-5884, 2021, doi: 10.1007/s11696-021-01767-9.
 
 [5]          Y. Zhang, L. Zhang, H. Wang, X. Ma, S. Yu, Y. Yan, and H. Bu, "Comparative Study on the Power Consumption and Flow Field Characteristics of a Three-Blade Combined Agitator," Processes, vol. 9, no. 11, doi: 10.3390/pr9111962.
 
[6] Y. Zhang, L. Zhang, H. Wang, X. Ma, S. Yu, Y. Yan, and H. Bu, "Comparative Study on the Power Consumption and Flow Field Characteristics of a Three-Blade Combined Agitator," Processes, vol. 9, no. 11, doi: 10.3390/pr9111962.
 
[7] A. Kazemzadeh, F. Ein-Mozaffari, and A. Lohi, "Effect of impeller type on mixing of highly concentrated slurries of large particles," Particuology, vol. 50, pp. 88-99, 2020/06/01/ 2020, doi: 10.1016/j.partic.2019.07.004.
 
[8] D. Gu, M. Ye, X. Wang, and Z. Liu, "Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers," Journal of the Taiwan Institute of Chemical Engineers, vol. 116, pp. 51-61, 2020/11/01/ 2020, doi: 10.1016/j.jtice.2020.11.013.
 
[9] W. Zhang, Z. Gao, Q. Yang, S. Zhou, and D. Xia, "Study of Novel Punched-Bionic Impellers for High Efficiency and Homogeneity in PCM Mixing and Other Solid-Liquid Stirs," Applied Sciences, vol. 11, no. 21, doi: 10.3390/app11219883.
 
[10]         S. S. Hoseini, G. Najafi, B. Ghobadian, and A. H. Akbarzadeh, "Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses," Chemical Engineering Journal, vol. 413, p. 127497, 2021/06/01/ 2021, doi: 10.1016/j.cej.2020.127497.
 
[11]         B. Li and J. Wang, "Mixing intensification through modifications of PBT impellers studied by DEM-VOF method," Chemical Engineering and Processing - Process Intensification, vol. 177, p. 109001, 2022/07/01/ 2022, doi: 10.1016/j.cep.2022.109001.
 
[12]         V. X. Mendoza-Escamilla, G. Rivadeneyra-Romero, H. Mollinedo, J. A. Yañez-Varela, I. Gonzalez-Neria, A. Alonzo-Garcia, and S. A. Martínez-Delgadillo, "Effect of Modified Impellers with Added Leading Edges Flanges on Pumping Efficiency in Agitated Tanks," Industrial & Engineering Chemistry Research, vol. 62, no. 1, pp. 535-544, 2023/01/11 2023, doi: 10.1021/acs.iecr.2c03321.
 
[13]         H. Patil, A. K. Patel, H. J. Pant, and A. Venu Vinod, "CFD simulation model for mixing tank using multiple reference frame (MRF) impeller rotation," ISH Journal of Hydraulic Engineering, vol. 27, no. 2, pp. 200-209, 2021/04/03 2021, doi: 10.1080/09715010.2018.1535921.
 
[14]         H. Wu and G. K. Patterson, "Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer," Chemical Engineering Science, vol. 44, no. 10, pp. 2207-2221, 1989/01/01/ 1989, doi: 10.1016/0009-2509(89)85155-3.
 
[15]         A. Kazemzadeh, F. Ein-Mozaffari, and A. Lohi, "Hydrodynamics of solid and liquid phases in a mixing tank containing high solid loading slurry of large particles via tomography and computational fluid dynamics," Powder Technology, vol. 360, pp. 635-648, 2020/01/15/ 2020, doi: 10.1016/j.powtec.2019.10.040.
 
[16]         D. Wadnerkar, M. O. Tade, V. K. Pareek, and R. P. Utikar, "CFD simulation of solid–liquid stirred tanks for low to dense solid loading systems," Particuology, vol. 29, pp. 16-33, 2016/12/01/ 2016, doi: 10.1016/j.partic.2016.01.012.
 
[17]         A. Guida, A. W. Nienow, and M. Barigou, "PEPT measurements of solid–liquid flow field and spatial phase distribution in concentrated monodisperse stirred suspensions," Chemical Engineering Science, vol. 65, no. 6, pp. 1905-1914, 2010/03/15/ 2010, doi: 10.1016/j.ces.2009.11.005.
 
[18]         M. Yadegari and A. Bak Khoshnevis, "Investigation of entropy generation, efficiency, static and ideal pressure recovery coefficient in curved annular diffusers," The European Physical Journal Plus, vol. 136, pp. 1-19, 2021, doi: 10.1140/epjp/s13360-021-01071-1.
 
[19]         M. Yadegari and A. B. Khoshnevis, "Entropy generation analysis of turbulent boundary layer flow in different curved diffusers in air-conditioning systems," The European Physical Journal Plus, vol. 135, no. 6, p. 534, 2020, doi: 10.1140/epjp/s13360-020-00545-y.
 
[20]         M. Yadegari and A. B. Khoshnevis, "Numerical study of the effects of adverse pressure gradient parameter, turning angle and curvature ratio on turbulent flow in 3D turning curved rectangular diffusers using entropy generation analysis," The European Physical Journal Plus, vol. 135, no. 7, p. 548, 2020, doi: 10.1140/epjp/s13360-020-00561-y.
 
[21]         M. Yadegari, "An optimal design for S-shaped air intake diffusers using simultaneous entropy generation analysis and multi-objective genetic algorithm," The European Physical Journal Plus, vol. 136, no. 10, p. 1019, 2021, doi: 10.1140/epjp/s13360-021-01999-4.
 
[22]         M. Yadegari and A. Bak Khoshnevis, "A numerical study over the effect of curvature and adverse pressure gradient on development of flow inside gas transmission pipelines," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, pp. 1-15, 2020, doi: 10.1007/s40430-020-02495-z.
 
[23]         H. Haghighatjoo, M. Yadegari, and A. Bak Khoshnevis, "Optimization of single-obstacle location and distance between square obstacles in a curved channel," The European Physical Journal Plus, vol. 137, no. 9, p. 1042, 2022, doi: 10.1140/epjp/s13360-022-03260-y.
 
[24]         D. Chapple, S. M. Kresta, A. Wall, and A. Afacan, "The Effect of Impeller and Tank Geometry on Power Number for a Pitched Blade Turbine," Chemical Engineering Research and Design, vol. 80, no. 4, pp. 364-372, 2002/05/01/ 2002, doi: 10.1205/026387602317446407.