طراحی بهینۀ سیستم تعلیق خودرو با استفاده از الگوریتم تکامل تفاضلی چندهدفی

نوع مقاله : علمی پژوهشی

نویسنده

استادیار، گروه مهندسی مکانیک، واحد بندرانزلی، دانشگاه آزاد اسلامی، بندرانزلی، ایران

چکیده

در این مقاله بهینه ­یابی دو و هفت ­هدفی مدل ارتعاشی خطی و فعال خودروی پنج درجۀ آزادی توسط تلفیق الگوریتم تکامل تفاضلی دارای ضریب جهش فازی شده با الگوریتم جست ­و جوی نامغلوب و معیار فاصلۀ ازدحامی ( MODE - FM) انجام شده است و نتایج در قالب جبهۀ پارتو به نمایش درآمده اند. توابع هدفی که برای بررسی کارآمدی سیستم تعلیق در دستیابی توأمان به راحتی سرنشین و فرمان­پذیری خودرو به­کار رفته­اند عبارتند از شتاب عمودی صندلی، سرعت عمودی تایر جلو، سرعت عمودی تایر عقب، جا به جایی نسبی جرم معلق و تایر جلو، جا به جایی نسبی جرم معلق و تایر عقب، نیروی کنترلی تعلیق جلو و نیروی کنترلی تعلیق عقب. متغیرهای طراحی شامل ضرایب فنرها و مستهلک کننده­ های­ سیستم تعلیق و صندلی و ضرایب نیروی کنترلی به همراه فاصلۀ صندلی از مرکز جرمِ جرم معلق هستند که طراحی پیشنهادی مبتنی بر آنها ارائه می ­شود. ضمناً، ناهمواری­ جاده ای به ­صورت پروفایل تصادفی ایستا با زبری کلاس  Cطبق استاندارد ایزو 8608 به سیستم تعلیق وارد می شود. مقایسۀ نتایج با کارهای پیشین مؤید برتری کار حاضر است. 

کلیدواژه‌ها

موضوعات


[1] N. Yagiz and Y. Hacioglu, "Backstepping control of a vehicle with active suspensions," Control Engineering Practice, vol. 16, no. 12, pp. 1457-1467, 2008/12/01/ 2008, doi: https://doi.org/10.1016/j.conengprac.2008.04.003.
 
[2] A. Hac and I. Youn, "Optimal Semi-Active Suspension with Preview based on a Quarter Car Model," in 1991 American Control Conference, 26-28 June 1991 1991, pp. 433-438, doi: 10.23919/ACC.1991.4791404.
 
[3] M. Fleps-Dezasse and J. Brembeck, "LPV Control of Full-Vehicle Vertical Dynamics using Semi-Active Dampers," IFAC-PapersOnLine, vol. 49, no. 11, pp. 432-439, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.ifacol.2016.08.064.
 
[4] Ş. Yildirim, "Vibration control of suspension systems using a proposed neural network," Journal of Sound and Vibration, vol. 277, no. 4, pp. 1059-1069, 2004/11/05/ 2004, doi: https://doi.org/10.1016/j.jsv.2003.09.057.
 
[5] M. Bouazara and M. J. Richard, "An optimization method designed to improve 3-D vehicle comfort and road holding capability through the use of active and semi-active suspensions," European Journal of Mechanics - A/Solids, vol. 20, no. 3, pp. 509-520, 2001/05/01/ 2001, doi: https://doi.org/10.1016/S0997-7538(01)01138-X.
 
[6] S. Kitayama, M. Arakawa, and K. Yamazaki, "Differential evolution as the global optimization technique and its application to structural optimization," Applied Soft Computing, vol. 11, no. 4, pp. 3792-3803, 2011/06/01/ 2011, doi: https://doi.org/10.1016/j.asoc.2011.02.012.
 
[7] N. Srinivas and K. Deb, "Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms," Evolutionary Computation, vol. 2, no. 3, pp. 221-248, 1994, doi: 10.1162/evco.1994.2.3.221.
 
[8] A. Toffolo and E. Benini, "Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms," Evolutionary Computation, vol. 11, no. 2, pp. 151-167, 2003, doi: 10.1162/106365603766646816.
 
[9] B. Gao, J. Darling, D. G. Tilley, R. A. Williams, A. Bean, and J. Donahue, "Control of a hydropneumatic active suspension based on a non-linear quarter-car model," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, no. 1, pp. 15-31, 2006/02/01 2006, doi: 10.1243/095965105X77501.
 
[10]         G. Georgiou, G. Verros, and S. Natsiavas, "Multi-objective optimization of quarter-car models with a passive or semi-active suspension system," Vehicle System Dynamics, vol. 45, no. 1, pp. 77-92, 2007/01/01 2007, doi: 10.1080/00423110600812925.
 
[11]         K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002, doi: 10.1109/4235.996017.
 
[12]         B. Loyer and L. Jézéquel, "Robust design of a passive linear quarter car suspension system using a multi-objective evolutionary algorithm and analytical robustness indexes," Vehicle System Dynamics, vol. 47, no. 10, pp. 1253-1270, 2009/10/01 2009, doi: 10.1080/00423110802613394.
 
[13]         N. Nariman-Zadeh, M. Salehpour, A. Jamali, and E. Haghgoo, "Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA)," Engineering Applications of Artificial Intelligence, vol. 23, no. 4, pp. 543-551, 2010/06/01/ 2010, doi: https://doi.org/10.1016/j.engappai.2009.08.008.
 
[14]         Salehpour, Jamali, and z. Nariman, "Optimal Selection of Active Suspension Parameters Using Artificial Intelligence," ASE, vol. 1, no. 4, pp. 244-255, 2011. [Online]. Available: http://www.iust.ac.ir/ijae/article-1-67-en.html.
 
[15]         L.-X. Guo and L.-P. Zhang, "Robust H∞ control of active vehicle suspension under non-stationary running," Journal of Sound and Vibration, vol. 331, no. 26, pp. 5824-5837, 2012/12/17/ 2012, doi: https://doi.org/10.1016/j.jsv.2012.07.042.
 
[16]         A. Jamali, M. Salehpour, and N. Nariman-zadeh, "Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters," Multibody System Dynamics, vol. 30, no. 3, pp. 265-285, 2013/10/01 2013, doi: 10.1007/s11044-012-9337-4.
 
[17]         M. J. Mahmoodabadi, A. A. Safaie, A. Bagheri, and N. Nariman-zadeh, "A novel combination of Particle Swarm Optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model," Applied Soft Computing, vol. 13, no. 5, pp. 2577-2591, 2013/05/01/ 2013, doi: https://doi.org/10.1016/j.asoc.2012.11.028.
 
[18]         A. Jamali, H. Shams, and M. Fasihozaman, "Pareto multi-objective optimum design of vehicle-suspension system under random road excitations," Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 228, no. 3, pp. 282-293, 2014/09/01 2014, doi: 10.1177/1464419314531757.
 
[19]         L. R. C. Drehmer, W. J. Paucar Casas, and H. M. Gomes, "Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm," Vehicle System Dynamics, vol. 53, no. 4, pp. 449-474, 2015/04/03 2015, doi: 10.1080/00423114.2014.1002503.
 
[20]         B. Gadhvi, V. Savsani, and V. Patel, "Multi-Objective Optimization of Vehicle Passive Suspension System Using NSGA-II, SPEA2 and PESA-II," Procedia Technology, vol. 23, pp. 361-368, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.protcy.2016.03.038.
 
[21]         M. Salehpour, A. Jamali, A. Bagheri, and N. Nariman-zadeh, "A new adaptive differential evolution optimization algorithm based on fuzzy inference system," Engineering Science and Technology, an International Journal, vol. 20, no. 2, pp. 587-597, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.jestch.2017.01.004.
 
[22]         M. Salehpour, A. Jamali, A. Bagheri, and N. Nariman-zadeh, "Optimum sliding mode controller design based on skyhook model for nonlinear vehicle vibration model," ASE, vol. 7, no. 4, pp. 2537-2550, 2017, doi: 10.22068/ijae.7.4.2537.
 
[23]         M. Salehpour, A. Jamali, A. Bagheri, and N. N. Nariman-zadeh, "Optimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor," ASE, vol. 8, no. 4, pp. 2854-2867, 2018, doi: 10.22068/ijae.8.4.2854.
 
[24]         G. Papaioannou and D. Koulocheris, "Multi-objective optimization of semi-active suspensions using KEMOGA algorithm," Engineering Science and Technology, an International Journal, vol. 22, no. 4, pp. 1035-1046, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.jestch.2019.02.013.
 
[25]         A. Jamali, R. Mallipeddi, M. Salehpour, and A. Bagheri, "Multi-objective differential evolution algorithm with fuzzy inference-based adaptive mutation factor for Pareto optimum design of suspension system," Swarm and Evolutionary Computation, vol. 54, p. 100666, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.swevo.2020.100666.
 
[26]         M. Salehpour and A. Bagheri, "Pareto optimization of a nonlinear vehicle model using multi-objective differential evolution algorithm with fuzzy inference-based adaptive mutation factor (MODE-FM)," ASE, vol. 11, no. 3, pp. 3594-3613, 2021, doi: 10.22068/ase.2021.595.
 
[27]         M. Issa and A. Samn, "Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm," Mathematics and Computers in Simulation, vol. 191, pp. 328-345, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.matcom.2021.08.016.
 
[28]         S. R. Gampa et al., "Pareto optimality based PID controller design for vehicle active suspension system using grasshopper optimization algorithm," Journal of Electrical Systems and Information Technology, vol. 9, no. 1, p. 24, 2022/12/14 2022, doi: 10.1186/s43067-022-00065-y.
 
[29]         V. Prasad, D. N. Pawaskar, and P. Seshu, "Hybrid GA for multi-objective design of heavy goods vehicle suspension system," Soft Computing, vol. 27, no. 15, pp. 10719-10735, 2023/08/01 2023, doi: 10.1007/s00500-023-08235-4.
 
[30]         H. Gheibollahi and M. Masih-Tehrani, "A multi-objective optimization method based on NSGA-II algorithm and entropy weighted TOPSIS for fuzzy active seat suspension of articulated truck semi-trailer," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 237, no. 17, pp. 3809-3826, 2023/09/01 2023, doi: 10.1177/09544062231151799.
 
[31]         K. Wu et al., "Experimental research on vehicle active suspension based on time-delay control," International Journal of Control, pp. 1-17, doi: 10.1080/00207179.2023.2201650.
 
[32]         H. Zare, M. M. Jalili, and M. R. Fazel, "Multiobjective optimization for semi-active electromagnetic vehicle suspensions," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 8, p. 419, 2023/07/17 2023, doi: 10.1007/s40430-023-04347-y.
 
[33]         M. Ghorbany, S. Ebrahimi-Nejad, and M. Mollajafari, "Global-guidance chaotic multi-objective particle swarm optimization method for pneumatic suspension handling and ride quality enhancement on the basis of a thermodynamic model of a full vehicle," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, p. 09544070221148287, 2023, doi: 10.1177/09544070221148287.
 
[34]         H. Du and N. Zhang, "H∞ control of active vehicle suspensions with actuator time delay," Journal of Sound and Vibration, vol. 301, no. 1, pp. 236-252, 2007/03/20/ 2007, doi: https://doi.org/10.1016/j.jsv.2006.09.022.
 
[35]         G. Liu, Y. Li, X. Nie, and H. Zheng, "A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization," Applied Soft Computing, vol. 12, no. 2, pp. 663-681, 2012/02/01/ 2012, doi: https://doi.org/10.1016/j.asoc.2011.09.020.
 
[36]         C. Zhang, J. Chen, and B. Xin, "Distributed memetic differential evolution with the synergy of Lamarckian and Baldwinian learning," Applied Soft Computing, vol. 13, no. 5, pp. 2947-2959, 2013/05/01/ 2013, doi: https://doi.org/10.1016/j.asoc.2012.02.028.
 
[37]         W. Deng, X. Yang, L. Zou, M. Wang, Y. Liu, and Y. Li, "An improved self-adaptive differential evolution algorithm and its application," Chemometrics and Intelligent Laboratory Systems, vol. 128, pp. 66-76, 2013/10/15/ 2013, doi: https://doi.org/10.1016/j.chemolab.2013.07.004.
 
[38]         "Mechanical vibration — Road surface profiles — Reporting of measured data," ISO, ISO 8608:2016(E), 2016. [Online]. Available: https://www.iso.org/standard/71202.html.