بررسی اثر کنترل فعال جریان بر عملکرد توربین باد محور افقی 100 کیلووات

نوع مقاله : علمی پژوهشی

نویسنده

استادیار، گروه مهندسی مکانیک و هوافضا، دانشگاه آزاد اسلامی، واحد رامسر، رامسر

چکیده

در این مقاله اثر عملگر پلاسما تخلیه سد دی الکتریک روی کنترل جدایش جریان اطراف مقطعی از پره توربین باد محور افقی مورد بررسی قرار گرفته است. در ابتدا، شبیه‌ سازی ‌های عددی دو بعدی با وجود عملگر پلاسما با استفاده از مدل الکترواستاتیک ارتقاء‌ یافته در شرایط عملکردی و زوایای حمله مختلف انجام گرفته و سپس با استفاده از روش سطح پاسخ یک مدل ریاضی صریح که تأثیر پارامترهای موثر بر ضرایب آیرودینامیکی را در بر گیرد استخراج شده است. کوچک شدن ناحیه جدایش، در اثر تزریق مومنتم حاصل از فعال سازی عملگر پلاسما مشاهده شد. مدل ریاضی بدست آمده دارای اعتبار بسیار مناسبی بوده و نشان می ‌‌دهد که اندرکنش معناداری میان پارامترهای عملگر و زاویه حمله وجود دارد. در انتها کدی به زبان متلب جهت پیاده سازی روش مومنتوم المان پره توسعه یافته و تغییر توان خروجی مکانیکی توربین باد تلوس 100 کیلووات در اثر فعال سازی عملگر پلاسما مورد ارزیابی قرار گرفته است. نتایج حاکی از عدم تأثیر عملگر بر توان خروجی، در سرعت راه اندازی تا سرعت 10 متر بر ثانیه و افزایش تا حدود 11 درصدی توان در سرعت 11 تا 16 متر بر ثانیه است.

کلیدواژه‌ها

موضوعات


[1] T. M. Letcher, "Wind Energy Engineering", Second ed. Siencedirect, 2023, https://doi.org/10.1016/C2021-0-00258-3.
 
[2] M. Khaled et al., "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, vol. 187, p. 115921, 2019,https://doi.org/10.1016/j.energy.2019.115921.
 
[3] M. N. Kaya et al., "Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades," Journal of Wind Engineering and Industrial Aerodynamics, vol. 176, pp. 166-173, 2018,https://doi.org/10.1016/j.jweia.2018.03.023.
 
[4] H. Wang et al., "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, vol. 118, pp. 1210-1221, 2017, https://doi.org/10.1016/j.energy.2016.11.003.
 
[5] F. Azlan et al., "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, vol. 271, p. 127090, 2023,https://doi.org/10.1016/j.energy.2023.127090.
 
[6] Z. Zhang et al., "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, vol. 281, p. 128252, 2023, https://doi.org/10.1016/j.energy.2023.128252.
 
[7] A. Abbaskhah et al., "Optimization of horizontal axis wind turbine performance with the dimpled blades by using CNN and MLP models," Ocean Engineering, vol. 276, p. 114185, 2023, https://doi.org/10.1016/j.oceaneng.2023.114185.
 
[8] H. Bhavsar, S. Roy, and H. Niyas, "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, vol. 263, p. 125666, 2023, https://doi.org/10.1016/j.energy.2022.125666.
 
[9] J. Wang and L. Feng, "Plasma Actuator," in Flow Control Techniques and Applications(Cambridge Aerospace Series, Cambridge: Cambridge University Press, 2018, https://doi.org/10.1017/9781316676448.010.
 
[10]         S. Sekimoto et al., "Flow Control around NACA0015 Airfoil Using a Dielectric Barrier Discharge Plasma Actuator over a Wide Range of the Reynolds Number," Actuators, vol. 12, no. 1. https://doi.org/10.3390/act12010043.
 
[11]         R. A. Bernal-Orozco, I. Carvajal-Mariscal, and O. M. Huerta-Chavez, "Performance of DBD Actuator Models under Various Operating Parameters and Modifications to Improve Them," Fluids, vol. 8, no. 4. 2023,https://doi.org/10.3390/fluids8040112.
 
[12]         J. Omidi and K. Mazaheri, "Improving the performance of a numerical model to simulate the EHD interaction effect induced by dielectric barrier discharge," International Journal of Heat and Fluid Flow, vol. 67, pp. 79-94, 2017, https://doi.org/10.1016/j.ijheatfluidflow.2017.07.008.
 
[13]         J. Omidi and K. Mazaheri, "Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: operational parameters," Engineering with Computers, vol. 39, no. 3, pp. 2187-2208, 2023, https://doi.org/10.1007/s00366-022-01623-8.
 
[14]         P. Versailles et al., "Preliminary Assessment of Wind Turbine Blade Lift Control via Plasma Actuation," Wind Engineering, vol. 35, no. 3, pp. 339-356, 2011, https://doi.org/10.1260/0309-524x.35.3.339.
 
[15]         J. Omidi and K. Mazaheri, "Differential evolution algorithm for performance optimization of the micro plasma actuator as a microelectromechanical system," Scientific Reports, vol. 10, no. 1, p. 18865, 2020, https://doi.org/10.1038/s41598-020-75419-5.
 
[16]         M. Fadaei, A. R. Davari, and F. Sabetghadam, "Genetic algorithm optimization of a horizontal axis wind turbine blade section performance equipped with a single dielectric barrier discharge plasma actuator utilizing a direct regression model," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, no. 20, pp. 10456-10469, 2022, https://doi.org/10.1177/09544062221104346.
 
[17]         L. Guoqiang and Y. Shihe, "Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator," Energy, vol. 212, p. 118753, 2020, https://doi.org/10.1016/j.energy.2020.118753.
 
[18]         A. Rezaeiha and M. Kotsonis, "Plasma Actuation for Mitigation of Fluctuating Loads on Airfoils: An Experimental Study," Journal of Physics: Conference Series, vol. 1618, no. 5, p. 052067, 2020, https://doi.org/10.1088/1742-6596/1618/5/052067.
 
[19]         M. Fadaei et al., "Enhancement of a horizontal axis wind turbine airfoil performance using single dielectric barrier discharge plasma actuator," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 235, no. 3, pp. 476-493, 2020, https://doi.org/10.1177/0957650920936026.
 
[20]         J. Omidi, "DBD Plasma Actuator Effect on Mid-Blade Aerodynamics Enhancement of a NREL 5-MW Wind Turbine," in 2022 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR), 2022, pp. 1-6, https://doi.org/10.1109/ICFCR54831.2022.9893633.
 
[21]         M. Chetan et al., "Design of a 3.4-MW wind turbine with integrated plasma actuator-based load control," Wind Energy, vol. 25, no. 3, pp. 517-536, 2022, https://doi.org/10.1002/we.2684.
 
[22]         M. Hansen, Aerodynamics of Wind Turbines 3rd ed. Routledge, 2015, https://doi.org/10.4324/9781315769981.
 
[23]         E. Branlard, Wind Turbine Aerodynamics and Vorticity-Based Methods (Research Topics in Wind Energy). Springer Cham, 2017, p. 632, https://doi.org/10.1007/978-3-319-55164-7.
 
[24]         W. Z. Shen et al., "Tip loss corrections for wind turbine computations," Wind Energy, vol. 8, no. 4, pp. 457-475, 2005, https://doi.org/10.1002/we.153.
 
[25]         G. R. Pirrung et al., "A simple improvement of a tip loss model for actuator disc simulations," Wind Energy, vol. 23, no. 4, pp. 1154-1163, 2020, https://doi.org/10.1002/we.2481.
 
[26]         S. Hjort, "Non-Empirical BEM Corrections Relating to Angular and Axial Momentum Conservation," Energies, vol. 12, no. 2. https://doi.org/ 10.3390/en12020320.
 
[27]         W. Zhong et al., "A tip loss correction model for wind turbine aerodynamic performance prediction," Renewable Energy, vol. 147, pp. 223-238, 2020, https://doi.org/10.1016/j.renene.2019.08.125.
 
[28]         J. G. Schepers, "Final report of IEA AnnexXVIII: ’Enhanced Field Rotor Aerodynamics Database’," 2002, Available: http://resolver.tudelft.nl/uuid:98573be4-3cdc-417d-a022-5c66dc43799b.
 
[29]         M. Abdollahzadeh, J. C. Pascoa, and P. J. Oliveira, "Comparison of DBD plasma actuators flow control authority in different modes of actuation," Aerospace Science and Technology, vol. 78, pp. 183-196, 2018/07/01/ 2018,https://doi.org/10.1016/j.ast.2018.04.013.
 
[30]         J. P. M. Abdollahzadeh, Paulo Jorge Oliveira, "Numerical modeling of boundary layer control using dielectric barrier discharge," presented at the MEFTE IV Conferencia Nacional em Mecanica de Fluidos, Termodinamica e Energia, Lisbon, January 2012, 2012. https://www.researchgate.net/publication/273777271_Numerical_modeling_of_boundary_layer_control_using_dielectric_barrier_discharge.
 
[31]         D. C. Wilcox, Turbulence Modeling for CFD (no. v. 1). DCW Industries, 2006, ISBN 9781928729082. https://www.amazon.com/Turbulence-Modeling-Third-David-Wilcox/dp/1928729088.
 
[32]         C. Hirsch, Numerical Computation of Internal and External Flows. Butterworth-Heinemann Limited, 2006, ISBN 9780750665957. https://www.sciencedirect.com/book/9780750665940/numerical-computation-of-internal-and-external-flows.
 
[33]         L. A. Sarabia and M. C. Ortiz, "1.12 - Response Surface Methodology," in Comprehensive Chemometrics, S. D. Brown, R. Tauler, and B. Walczak, Eds. Oxford: Elsevier, 2009, pp. 345-390, https://doi.org/10.1016/B978-044452701-1.00083-1.
 
[34]         P. Brøndsted, R. P. L. Nijssen, Advances in Wind Turbine Blade Design and Materials. Woodhead Publishing, 2023, https://doi.org/10.1016/C2018-0-02027-7.
 
[35]         J. Martínez et al., "An improved BEM model for the power curve prediction of stall-regulated wind turbines," Wind Energy, vol. 8, no. 4, pp. 385-402, 2005, https://doi.org/10.1002/we.147.
 
[36]         K. Mazaheri, J. Omidi, and K. C. Kiani, "Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model," Computers & Fluids, vol. 140, pp. 371-384, 2016, https://doi.org/10.1016/j.compfluid.2016.10.015.