مروری بر روند توسعه خودروهای پیل‌ سوختی در دنیا

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران

2 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران

چکیده

در این تحقیق با مرور بر بیش از 50 مقاله معتبر و به روز بین ­المللی، مزایا و چالش­ های خودرو پیل ‌سوختی، بیان گردیده ­است. همچنین ضمن ارائه آخرین آمار از بازار خودروهای پیل ‌سوختی در دنیا، راهکارهای کشورهای مختلف جهت رفع چالش ­ها و توسعه این خودروها و نیز پیش ­بینی آینده آن ها عنوان گردیده­ است. بسیاری از کشورها سال ­های 2030 الی 2050 را به عنوان شروع ممنوعیت فروش خودروهای احتراق داخلی اعلام کرده ­اند. یکی از چالش­ های مهم خودرو پیل ‌سوختی تولید هیدروژن است. طبق گزارش اتحادیه اروپا هزینه متوسط تولید هیدروژن از سوخت فسیلی 8/1 دلار به کیلوگرم است در حالیکه هزینه تولید هیدروژن از انرژی‌ های تجدیدپذیر بین 3 تا 6/6 دلار بر کیلوگرم است. با کاهش هزینه تولید هیدروژن از طریق استفاده از انرژی ­های تجدید پذیر، می­ توان به هدف ایده­آل هزینه پایین و آلایندگی کم دست پیدا کرد، به نحوی که طبق نقشه راه آژانس بین المللی انرژی (IEA) در سال 2050 هزینه خودروهای پیل ‌سوختی بسیار نزدیک به خودروهای بنزینی خواهد ‌بود و سهم بازار خودرو پیل ‌سوختی در حدود 17 درصد خواهد ‌بود. هم اکنون تخصیص یارانه ­های دولتی بسیار پر رنگ است. برای مثال می توان به تخفیف 65 درصدی در کالیفرنیا برای فروش تویوتا Mirai و تخفیف 50 درصدی در کره جنوبی برای فروش هیوندای NEXO اشاره کرد.

کلیدواژه‌ها

موضوعات


[1] Alcázar-García, D., and Romeral Martínez, J. L., Model-based design validation and optimization of drive systems in electric, hybrid, plug-in hybrid and fuel cell vehicles, Energy,  Vol. 254,   DOI: https://doi.org/10.1016/j.energy.2022.123719, (2022).
 
[2] Li, Y., and Kimura, S., Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios, Energy Policy,  Vol. 148, part B, Article ID: 111980, DOI: https://doi.org/10.1016/j.enpol.2020.111980 (2021).
 
[3] Liu, T., Tang, X., Wang, H., Yu, H., and Hu, X., Adaptive hierarchical energy management design for a plug-in hybrid electric vehicle, IEEE Transactions on Vehicular Technology,  Vol. 68, pp. 11513–11522, DOI: 10.1109/TVT.2019.2926733, (2019).
 
[4] Offer, G.J., Howey, D., Contestabile, M., Clague, R., and Brandon, N.P., Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy,  Vol. 38, pp. 24–29, DOI: https://doi.org/10.1016/j.enpol.2009.08.040 (2010).
 
[5] Trencher, G., and Wesseling, J., Roadblocks to fuel-cell electric vehicle diffusion: Evidence from Germany, Japan and California, Transportation Research Part D: Transport and Environment,  Vol. 112, Article ID: 103458, DOI: https://doi.org/10.1016/j.trd.2022.10345, ( 2022).
 
[6] Khan, U., Yamamoto, T., and Sato, H., Understanding the discontinuance trend of hydrogen fuel cell vehicles in Japan, International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2022.07.141,  Vol. 47, pp. 31949–31963, (2022).
 
[7] Park, C., Lim, S., Shin, J., and Lee, C.-Y., How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea, Technological Forecasting and Social Change,  Vol. 181, Article ID: 121750,DOI: https://doi.org/10.1016/j.techfore.2022.121750, (2022).
 
[8] Zhang, K., Lau, H.C., and Chen, Z., The contribution of carbon capture and storage to Canada’s net-zero plan, Journal of Cleaner Production, Vol. 404, Article ID: 136901, DOI: https://doi.org/10.1016/j.jclepro.2023.136901, (2023).
 
[9] Ferrero, E., Alessandrini, S., and Balanzino, A., Impact of the electric vehicles on the air pollution from a highway, Applied Energy,  Vol. 169, pp. 450–459, DOI: https://doi.org/10.1016/j.apenergy.2016.01.098, (2016).
 
[10] Mahmoudzadeh Andwari, A., Pesiridis, A., Rajoo, S., Martinez-Botas, R., and Esfahanian, V., A review of Battery Electric Vehicle technology and readiness levels, Renewable and Sustainable Energy Reviews,  Vol. 78, pp. 414–430, DOI: https://doi.org/10.1016/j.rser.2017.03.138, (2017).
 
[11] Moon, S., Lee, Y.-J., and Lee, D.-J., A cost-effectiveness analysis of fuel cell electric vehicles considering infrastructure costs and greenhouse gas emissions: An empirical case study in Korea, Sustainable Energy Technologies and Assessments,  Vol. 54, Article ID: 102777, DOI: https://doi.org/10.1016/j.seta.2022.102777, (2022).
 
[12] International Energy Agengy, Global EV Outlook 2023, Geo, (2023).
 
[13] Upham, P., The re Volution is conditional? The conditionality of hydrogen fuel cell expectations in five European countries, Energy Research and Social Science,  Vol. 70, Article ID: 101722, DOI: https://doi.org/10.1016/j.erss.2020.101722, (2020).
 
[14] Leibowicz, B.D., Policy recommendations for a transition to sustainable mobility based on historical diffusion dynamics of transport systems, Energy Policy,  2023 Elsevier Ltd, Vol. 119, pp. 357–366, DOI: https://doi.org/10.1016/j.enpol.2018.04.066, (2018).
 
[15] Cano, Z.P., Siyu Ye, D.B., Hintennach, A., Lu, J., Fowler, M., & Chen, Z., Batteries and fuel cells for emerging electric vehicle markets, Nature Energy,  Vol. 3, pp. 279–289, DOI:10.1038/s41560-018-0108-1, (2018).
 
[16] Bergman, N., Electric vehicles and the future of personal mobility in the United Kingdom, in Transitions in Energy Efficiency and Demand, Routledge, pp. 53–71, (2019).
 
[17] Mekhilef, S., Saidur, R., and Safari, A., Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews,  Vol. 16, pp. 981–989, DOI: https://doi.org/10.1016/j.rser.2011.09.020, (2012).
 
[18] Ognissanto, F., Landen, T., Stevens, A., Emre, M., and Naberezhnykh, D., Evaluation of the CO2 emissions pathway from hydrogen production to fuel cell car utilisation, IET Intelligent Transport Systems,  Vol. 11, pp. 360–367, DOI: https://doi.org/10.1049/iet-its.2016.0210, ( 2017).
 
[19] Maiti, T.K., Singh, J., Dixit, P., Majhi, J., Bhushan, S., Bandyopadhyay, A., Chattopadhyay, S., Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review, Chemical Engineering Journal Advances,  Vol. 12, Article ID: 100372, DOI: https://doi.org/10.1016/j.ceja.2022.100372, (2022).
 
[20] Djilali, N., Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities, Energy,  Vol. 32, pp. 269–280, DOI: https://doi.org/10.1016/j.energy.2006.08.007, (2007).
 
[21] Kasimalla, V. K., G, N.S., and Velisala, V., A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric vehicles, International Journal of Energy Research,  Vol. 42, pp. 4263–4283, DOI: https://doi.org/10.1002/er.4166, (2018).
 
[22] Álvarez Fernández, R., Corbera Caraballo, S., Beltrán Cilleruelo, F., and Lozano, J.A., Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms, Renewable and Sustainable Energy Reviews,  Vol. 81, pp. 655–668, DOI: https://doi.org/10.1016/j.rser.2017.08.047 (2018).
 
[23] Wong, E.Y.C., Ho, D.C.K., So, S., Tsang, C.W., and Chan, E.M.H., Life cycle assessment of electric vehicles and hydrogen fuel cell vehicles using the greet model—a comparative study, Sustainability (Switzerland),  Vol. 13, Article ID: 4872, DOI: https://doi.org/10.3390/su13094872, (2021).
 
[24] Kaur, G., PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application, Elsevier, (2021).
 
[25] Sagaria, S., Costa Neto, R., and Baptista, P., Assessing the performance of vehicles powered by battery, fuel cell and ultra-capacitor: Application to light-duty vehicles and buses, Energy Conversion and Management,  Vol. 229, Article ID: 113767, (2021).
 
[26] Wu, H.W., and Lin, K. W., Thermodynamic analysis of hydrogen-rich syngas production with a mixture of aqueous urea and biodiesel, International Journal of Hydrogen Energy,  Vol. 43, pp. 6804–6814, (2018).
 
[27] IPHE Country Update:  Available online: https://www.iphe.net (accessed on 4 June 2023).
 
[28] Matsunaga, M., Fukushima, T., and Ojima, K., Advances in the power train system of Honda FCX clarity fuel cell vehicle, SAE International, DOI: 10.4271/PT-143/5, (2009).
 
[29] Nakagaki, N., The newly developed components for the fuel cell vehicle, Mirai, SAE Technical Paper, DOI: https://doi.org/10.4271/2015-01-1174, (2015).
 
[30] Jiao, J., Li, J., and Bai, Y., Ethanol as a vehicle fuel in China: A review from the perspectives of raw material resource, vehicle, and infrastructure, Journal of Cleaner Production,  Vol. 180, pp. 832–845, DOI: https://doi.org/10.1016/j.jclepro.2018.01.141, (2018).
 
[31] Tong, F., and Azevedo, J.M.I., A review of hydrogen production pathways, cost and decarbonization potential, In Riding the Energy Cycles, 35th USAEE/IAEE North American Conference, Nov 12-15, International Association for Energy Economics, (2017).
 
[32] DOE, “Hydrogen Production: Electrolysis” [Online].Available:https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis.
 
[33] Albatayneh, A.,  Juaidi, A.,  Jaradat, M., and Manzano-Agugliaro, F., Future of Electric and Hydrogen Cars and Trucks: An Overview, Energies, Vol. 16(7),  pp. 3230, DOI: https://doi.org/10.3390/en16073230, (2023).
 
[34]         “IDTechEx”[Online].Available: https://www.idtechex.com/en/research-article/fuel-cells-are-not-the-problem-the-hydrogen-fuel-is/25913. [Accessed: 14-Feb-2022].
 
[35] Ji, M., and Wang, J., Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators, International Journal of Hydrogen Energy,  Vol. 46, pp. 38612–38635, DOI: https://doi.org/10.1016/j.ijhydene.2021.09.142, (2021).
 
[36] Wang, J., Wang, H., and Fan, Y., Techno-economic challenges of fuel cell commercialization, Engineering,  Vol. 4, pp. 352–360, DOI: https://doi.org/10.1016/j.eng.2018.05.007, (2018).
 
[37] Sun, K., and Li, Z., Quantitative risk analysis of life safety and financial loss for road accident of fuel cell vehicle, International Journal of Hydrogen Energy,  Vol. 44, pp. 8791–8798, DOI: https://doi.org/10.1016/j.ijhydene.2018.10.065, (2019).
 
[38] Zhang, J., Yao, H., and Rizzoni, G., Fault diagnosis for electric drive systems of electrified vehicles based on structural analysis, IEEE Transactions on Vehicular Technology,  Vol. 66, pp. 1027–1039, DOI: DOI: 10.1109/TVT.2016.2556691, (2016).
 
[39] Inayati, I., Waloyo, H. T., Nizam, M., and Saidi, H., Model-Based Simulation for Hybrid Fuel Cell/Battery/Ultracapacitor Electric Vehicle, Proceeding - 2018 5th International Conference on Electric Vehicular Technology, ICEVT 2018, pp. 112–115, DOI: 10.1109/ICEVT.2018.8628338, (2019).
 
[40] Samsun, R.C., Rex, M., Antoni, L., and Stolten, D., Deployment of fuel cell vehicles and hydrogen refueling station infrastructure: a global overview and perspectives, Energies,  Vol. 15(14), pp. 4975, DOI: 10.3390/en15144975, (2022).
 
[41] Bilgili, M., Bosomoiu, M., and Tsotridis, G., Gas flow field with obstacles for PEM fuel cells at different operating conditions, International Journal of Hydrogen Energy, Vol. 40, pp. 2303–2311, DOI: https://doi.org/10.1016/j.ijhydene.2014.11.139, (2015).
 
[42] Atyabi, S. A., Afshari, E., Zohravi, E., and Udemu, C.M., Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel, Energy, Article ID: 121247, DOI: https://doi.org/10.1016/j.energy.2021.121247,  (2021).
 
[43] Atyabi, S.A., and Afshari, E., Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side, Journal of Cleaner Production,  Vol. 214, pp. 738–748, DOI: https://doi.org/10.1016/j.jclepro.2018.12.293, (2019).
 
[44] Toghyani, S., Afshari, E., Baniasadi, E., and Atyabi, S.A., Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer, Electrochimica Acta, pp. 234–245,DOI: https://doi.org/10.1016/j.electacta.2018.02.078, (2018).
 
[45] Lorenzini-Gutierrez, D., Hernandez-Guerrero, A., Ramos-Alvarado, B., Perez-Raya, I., and Alatorre-Ordaz, A., Performance analysis of a proton exchange membrane fuel cell using tree-shaped designs for flow distribution, International Journal of Hydrogen Energy,  Vol. 38, pp. 14750–14763, DOI: https://doi.org/10.1016/j.ijhydene.2013.08.012, (2013).
 
[46] Koubaa, R., and krichen, L., Double layer metaheuristic based energy management strategy for a Fuel Cell/Ultra-Capacitor hybrid electric vehicle, Energy,  Vol. 133, pp. 1079–1093, DOI: https://doi.org/10.1016/j.energy.2017.04.070, (2017).
[47] Saib, S., Hamouda, Z., and Marouani, K., Energy management in a fuel cell hybrid electric vehicle using a fuzzy logic approach, in 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), pp. 1–4, DOI: 10.1109/ICEE-B.2017.8192197, (2017).
 
[48] Yang, B., Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach, Energy,  Vol. 191, Article ID: 116510, DOI: https://doi.org/10.1016/j.energy.2019.116510, (2020).  
 
[49] García, P., Fernández, L.M., Torreglosa, J. P., and Jurado, F., Operation mode control of a hybrid power system based on fuel cell/battery/ultracapacitor for an electric tramway, Computers & Electrical Engineering,  Vol. 39, pp. 1993–2004, DOI: https://doi.org/10.1016/j.compeleceng.2013.04.022, (2013).
 
[50] Ezzat, M.F., and Dincer, I., Development, analysis and assessment of fuel cell and photo Voltaic powered vehicles, International Journal of Hydrogen Energy,  Vol. 43, pp. 968–978, (2018).
 
[51] Wang, G., Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review, Fuel Processing Technology,  Vol. 179, pp. 203–228, DOI: https://doi.org/10.1016/j.ijhydene.2017.05.065, (2018).
 
[52] Selmi, T., Khadhraoui, A., and Cherif, A., Fuel cell–based electric vehicles technologies and challenges, Environmental Science and Pollution Research, Vol.29, pp.78121–78131,  DOI: https://doi.org/10.1007/s11356-022-23171-w, (2022).
 
[53] İnci, M., Büyük, M., Demir, M.H., and İlbey, G., A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects, Renewable and Sustainable Energy Reviews,  Vol. 137, DOI: https://doi.org/10.1016/j.rser.2020.110648, (2021).
 
[54] Air Resources Board, Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Development, California Environmental Protection Agency, July, (2021).
 
 [55] Fuse, M., Noguchi, H., and Seya ,H., Near-term location planning of hydrogen refueling stations in Yokohama City, International Journal of Hydrogen Energy, Vol. 46, Issue 23, pp. 12272-12279, DOI: DOI:10.1016/j.ijhydene.2020.09.199, (2021).
 
[56] Kim, J.H., Kim, H.J., and Yoo, S.H., Willingness to pay for fuel-cell electric vehicles in South Korea, Energy, Vol. 174, pp. 497–502,  DOI: https://doi.org/10.1016/j.energy.2019.02.185, (2019).
 
[57] Asif, U., and Schmidt, K., Fuel cell electric vehicles (Fcev): Policy advances to enhance commercial success, Sustainability,  Vol. 13, p. 5149,DOI: https://doi.org/10.3390/su13095149, (2021).
 
[58] Manoharan, Y., Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect, Applied Sciences,  Vol. 9, Article ID: 2296, DOI: https://doi.org/10.3390/app9112296, (2019).
 
[59] IRENA International Renewable Energy Agency and I. Renewable Energy Agency, Global Energy Transformation: A Roadmap to 2050 (2019 Edition), (2019).
 
[60] Balali, Y., and Stegen, S., Review of energy storage systems for vehicles based on technology, environmental impacts, and costs, Renewable and Sustainable Energy Reviews, vol. 135, Article ID: 110185, DOI: https://doi.org/10.1016/j.rser.2020.110185, (2021).
 
[61] Ashraf khorasani, M R., Goorabi, H., Dashti, I., Gholami jourshari, M., D, IJE, (2015).
 
[62] Baharlou-Houreh, N., Rajabi, F., and Afshari, E., The development of polymer fuel cells in the world and Iran, Third Annual Clean Energy Conference, 3-4 July, Kerman, Iran, (2013). (In Persian)
 
[63] Torabi, M., Bozorgmehri, S., and Golmohammad, M., Future study of application of Fuel Cells and Batteries in electrical vehicles (EVs), The national technological requirements
Niroo Research Institute (NRI)
, https://press.nri.ac.ir/book_400863.pdf, DOI: 10.30503/nripress.2020.104, (2020). (In Persian)