بررسی تأثیر پارامترهای مختلف بر فرآیند ماشین‌ کاری جرقه ای الکتروشیمیایی سیم ‌های متحرک (TW-ECSM)

نوع مقاله : علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

2 استادیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

3 دانشیار، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

چکیده

ماشین ‌کاری جرقه‌ای الکتروشیمیایی سیم‌ های متحرک (TW-ECSM) یکی از جدیدترین فرآیندهای ماشین‌ کاری می‌باشد که پتانسیل ماشین‌ کاری مواد پیشرفته غیر رسانا مانند شیشه، کوارتز، نیترید سیلیکون، کامپوزیت ‌های مختلف و سرامیک را دارد و اغلب برای ایجاد حفره‌ های پیچیده در مواد بر استحکام، به ‌ویژه در صنعت هوافضا، برای تولید انبوه پره‌ های توربین، قطعات موتور جت و نازل ‌ها به کار می ‌رود. مطالعات نشان می‌ دهد که رویکردهای ترکیبی اعمال شده برای مدل‌ سازی و بهینه‌ سازی فرآیند ماشین‌ کاری جرقه ‌ای الکتروشیمیایی سیم‌ های متحرک، معقول هستند. در این پژوهش از یک مدل ریاضی رگرسیون خطی مرتبه دوم به منظور پیش‌ بینی میزان نرخ براده‌ برداری در حین عملیات ماشین ‌کاری و زبری سطح و بر هم‌ کنش‌ های مؤثر آن ‌ها استفاده شده است. سپس با استفاده از روش آنالیز حساسیت آماری سوبل، تأثیر پارامترهای مختلف شامل ولتاژ، سرعت تغذیه سیم، تراکم الکترولیت و ضخامت قطعه‌ کار، بر نرخ براده ‌برداری و زبری سطح به دست آمده است. نتایج به دست آمده از آنالیز حساسیت نشان می‌ دهند که ولتاژ بیشترین تأثیر را بر نرخ براده ‌برداری و سرعت تغذیه سیم بیشترین اثر را بر زبری سطح داشته است.

کلیدواژه‌ها

موضوعات


[1] Kurafuji, H., and Suda, K., Electrical discharge drilling of glass, Annals of the CIRP, Vol. 16, pp. 415-419, (1968).
 
[2] Jain, V. K., Rao, P. S., Choudhury S. K., and Rajurkar, K. P., Experimental investigations into traveling wire electrochemical spark machining (TW-ECSM) of composites, ASME Transaction Journal of Engineering for Industry, Vol. 113, No. 1, pp. 75-84, (1991).
 
[3] Wuthrich, R., and Fascio, V., Machining of non-conducting materials using electrochemical discharge phenomenon-an overview, International Journal of Machine Tools & Manufacture, Vol. 45, No. 9, pp. 1095-1108, (2005).
 
[4] Munda, J., and Bhattacharyya, B., Investigation into electrochemical micromachining (EMM) through response surface methodology based approach. International Journal of Advanced Manufacturing Technology, Vol. 35, No. 7-8, pp. 821–832 (2006).
 
[5] Bhuyan, B. K., and Yadava, V., Experimental modeling and multi-objective optimization of traveling wire electrochemical spark machining (TW-ECSM) process, Journal of Mechanical Science and Technology, Vol. 27, No. 8, pp. 2467-2476, (2013).
 
[6] Manna, A., and Kundal, A., An experimental investigation on fabricated TW-ECSM setup during micro slicing of nonconductive ceramic, The International Journal of Advanced Manufacturing Technology, Vol. 76, No. 1, pp. 29-37, (2015).‏
 
[7] Malik, A., and Manna, A., Travelling wire electrochemical spark machining: an overview, Non-traditional Micromachining Processes, pp. 393-411, (2017).‏
 
[8] Rattan, N., and Mulik, R. S., Experimental set up to improve machining performance of silicon dioxide (quartz) in magnetic field assisted TW-ECSM process, Silicon, Vol. 10, No. 6, pp. 2783-2791, (2018).
 
[9] Wu, X., Study of removing the recast layer by electrochemical dissolution with wire low feedrate in WEDM, The International Journal of Advanced Manufacturing Technology, Vol. 105, No. 1, pp. 1143-1156, (2019).‏
 
[10] Yadav, P., Yadava, V., and Narayan, A., Experimental investigation for performance study of wire electrochemical spark cutting of silica epoxy nanocomposites, Silicon, Vol. 12, No. 5, pp. 1023-1033, (2020).‏
 
[11] Bhuyan, B. K., Bhuyan, P., and Mishra, S., Modeling and response optimization of traveling wire electro-chemical spark machining of borosilicate glass using hybrid approach, Journal of Advanced Manufacturing Systems, Vol. 19, No. 3, pp. 425-447, (2020).‏
 
[12] Kumar, M., Vaishya, R. O., Suri, N. M., and Gupta, A., Parametric optimization of traveling wire electrochemical discharge machining (TW-ECDM) process for aspect ratio during machining of borosilicate glass, Materials Today: Proceedings, (2022).‏
 
[13] Mohitkar, A. D., Rattan, N., and Mulik, R. S., Improvement in Machining Performances of SiC Workpiece Using TW-Electro Chemical Spark Machining, Silicon, Vol. 14, No. 4, pp. 1369-1379, (2022).
 
[14] Safikhani, H., Taheri, M., and Usefi, M., Sensitivity analysis of the effective nanofluid parameters flowing in flat tubes using the EFAST method, Challenges in Nano and Micro Scale Science and Technology, Vol. 7, No.2, pp. 80-87, (2019).‏
 
[15] Khorshidi, K., Taheri, M., and Ghasemi, M., Sensitivity Analysis of Vibrating Laminated Composite Rec-tangular Plates in Interaction with Inviscid Fluid Using EFAST Method, Mechanics of Advanced Composite Structures‎, Vol. 7, No. 2, pp. 219-231, (2020).
 
[16] Taheri, M., and Bathaee, S. H., Investigating machining factors of recovery powder metallurgy parts, from filings and sintered by Design of experiments in conjunction with sensitivity analysis, Iranian Journal of Manufacturing Engineering, Vol. 7, No. 7, pp. 24-37, (2020).‏
 
[17] Mostafavi, S. A., and Taheri, M., Effect of geometrical parameters on thermal efficiency and fuel consumption of heaters of a natural gas pressure reduction station using Sobol statistical sensitivity analysis, Heat Transfer, Vol. 50, No. 2, pp. 1254-1267, (2021).‏
 
[18] Saltelli A., and Sobol, I. M., About the use of rank transformation in sensitivity analysis of model output, Reliability Engineering & System Safety, Vol. 50, pp. 225-239, (1995).