اثر تحریک مد عرضی بر ناپایداری احتراق ترموآکوستیکی

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشجوی دکتری، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

2 استاد، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در بسیاری از مدل‌های توسعه داده شده برای پیش‌بینی ناپایداری احتراق در موتورهای توربینی، مدهای عرضی در نظر گرفته نمی‌شوند. اما در محفظه‌های حلقوی به دلیل قابل مقایسه بودن عرض در برابر طول، مدهای عرضی با اهمیت می‌شوند. در موتورهای توربین گاز پدیده غالب ناپایداری احتراق از نوع ترموآکوستیکی است که در صورت وقوع می‌تواند باعث افزایش دما روی دیواره‌ها، افت بازده، افزایش آلاینده‌ها و از بین رفتن کنترل سیستم پیشران شود. با توجه به اهمیت این موضوع، در این تحقیق مهم‌ترین مراجعی که تاکنون موضوع ناپایداری احتراق را با توجه به این نوع مدها بررسی نموده‌اند، مورد بحث قرار خواهند گرفت. در ادامه نیز کلیات یک روش نوین سه مرحله‌ای مبتنی بر حل عددی LES، محاسبه تابع پاسخ شعله (FTF) و سپس استفاده از این تابع در حلگر آکوستیکی هلمهولتز ارائه خواهد شد تا با استفاده از آن بتوان پدیده ناپایداری احتراق ترموآکوستیکی را با هزینه محاسباتی مناسب شبیه‌سازی نمود.

کلیدواژه‌ها

موضوعات


[1] Iurashev, D. Numerical and analytical study of combustion instabilities in industrial gas turbines. Ph.D. thesis, Universita degli Studi di Genova, 2017.
[2] Culick, FEC. Combustion instabilities in propulsion systems. in Unsteady combustion, pp. 173–241. Springer, 1996.
[3] Lieuwen, Timothy C and Yang, Vigor. Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling. American Institute of Aeronautics and Astronautics, 2005.
[4] Huang, Ying and Yang, Vigor. Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in energy and combustion science, 35(4):293–364, 2009.
[5] Lieuwen, Tim C. Investigation of combustion instability mechanisms in premixed gas turbines. Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, 1999.
[6] Dowling, Ann P and Stow, Simon R. Acoustic analysis of gas turbine combustors. Journal of propulsion and power, 19(5):751–764, 2003.
[7] Nicoud, Franck, Benoit, Laurent, Sensiau, Claude, and Poinsot, Thierry. Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA journal, 45(2):426–441, 2007.
[8] Pankiewitz, Christian and Sattelmayer, Thomas. Time domain simulation of combustion instabilities in annular combustors. J. Eng. Gas Turbines Power, 125(3):677–685, 2003.
[9] Candel, Sébastien, Durox, Daniel, Ducruix, Sébastien, Birbaud, A-L, Noiray, Nicolas, and Schuller, Thierry. Flame dynamics and combustion noise: progress and challenges. International Journal of Aeroacoustics, 8(1):1–56, 2009.
[10] Cuquel, Alexis, Durox, Daniel, and Schuller, Thierry. Impact of flame base dynamics on the non-linear frequency response of conical flames. Comptes Rendus Mécanique, 341(1-2):171–180, 2013.
[11] Kedia, KS, Altay, HM, and Ghoniem, AF. Impact of flamewall interaction on premixed flame dynamics and transfer function characteristics. Proceedings of the Combustion Institute, 33(1):1113–1120, 2011.
[12] Ducruix, Sébastien, Durox, Daniel, and Candel, Sébastien. Theoretical and experimental determinations of the transfer function of a laminar premixed flame. Proceedings of the combustion institute, 28(1):765–773, 2000.
[13] Durox, Daniel, Schuller, Thierry, Noiray, Nicolas, and Candel, Sébastien. Experimental analysis of nonlinear flame transfer functions for different flame geometries. Proceedings of the Combustion Institute, 32(1):1391–1398, 2009.
[14] Fureby, Christer. Les of a multi-burner annular gas turbine combustor. Flow, turbulence and combustion, 84(3):543– 564, 2010.
[15] Gicquel, Laurent YM, Staffelbach, Gabriel, and Poinsot, Thierry. Large eddy simulations of gaseous flames in gas turbine combustion chambers. Progress in Energy and Combustion Science, 38(6):782–817, 2012.
[16] Schmitt, Patrick, POINSOT, Thierry, Schuermans, B, and Geigle, KP. Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. Journal of Fluid Mechanics, 570:17–46, 2007.
[17] Poinsot, Thierry. Prediction and control of combustion instabilities in real engines. Proceedings of the Combustion Institute, 36(1):1–28, 2017.
[18] Emmert, T, Bomberg, S, Jaensch, S, and Polifke, W. Acoustic and intrinsic thermoacoustic modes of a premixed combustor. Proceedings of the Combustion Institute, 36(3):3835–3842, 2017.
[19] Bigongiari, Alessandra and Heckl, Maria A. A green’s function approach to the rapid prediction of thermoacoustic instabilities in combustors. Journal of Fluid Mechanics, 798:970–996, 2016. [20] Lieuwen, Tim C. Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. Journal of Propulsion and Power, 18(1):61–67, 2002.
[۲۱] صادقی, ن. بررسی تجربی دینامیک شعله های چرخشی. پایان‌نامه کارشناسی‌ارشد, دانشگاه صنعتی شریف, 1388.
[۲۲] ریاضی, ر. بررسی پایداری شعله های پیش مخلوط در موتورهای توربینی. پایان‌نامه دکترا, دانشگاه صنعتی شریف, 1389.
[23] Lieuwen, Tim and Zinn, Ben T. The role of equivalence ratio oscillations in driving combustion instabilities in low nox gas turbines. in Symposium (International) on Combustion, vol. 27, pp. 1809–1816. Elsevier, 1998.
[24] Lieuwen, Tim and Zinn, Ben. Theoretical investigation of combustion instability mechanisms in lean premixed gas turbines. in 36th AIAA Aerospace Sciences Meeting and Exhibit, p. 641, 1998.
[25] Lieuwen, Tim, Torres, Hector, Johnson, Clifford, and Zinn, Ben T. A mechanism of combustion instability in lean premixed gas turbine combustors. J. Eng. Gas Turbines Power, 123(1):182–189, 2000.
[26] Roux, Sebastien, Lartigue, G, Poinsot, Thierry, Meier, U, and Bérat, Claude. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combustion and Flame, 141(1-2):40–54, 2005.
[27] Sayadi, Taraneh, Le Chenadec, Vincent, Schmid, Peter J, Richecoeur, Franck, and Massot, Marc. Thermoacoustic instability–a dynamical system and time domain analysis. Journal of Fluid Mechanics, 753:448–471, 2014.
[28] Li, Jingxuan and Morgans, Aimee S. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach. Journal of Sound and Vibration, 346:345–360, 2015.
[29] Dowling, Ann P. Nonlinear self-excited oscillations of a ducted flame. Journal of fluid mechanics, 346:271–290, 1997.
[30] Gentemann, Alexander, Yuen, S, and Polifke, Wolfgang. Influence of boundary reflection coefficient on the system identifiability of acoustic two-ports. in 11th Int. Congress on Sound and Vibration (ICSV), St. Petersburg, Russia, 2004.
[31] Luzzato, Charles M and Morgans, Aimee S. The effect of a laminar moving flame front on thermoacoustic oscillations of an anchored ducted v-flame. Combustion Science and Technology, 187(3):410–427, 2015.
[32] Pitsch, Heinz. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38:453–482, 2006.
[33] Lamarque, Nicolas and Poinsot, Thierry. Boundary conditions for acoustic eigenmodes computation in gas turbine combustion chambers. AIAA journal, 46(9):2282–2292, 2008.
[34] Motheau, Emmanuel, Nicoud, Franck, and Poinsot, Thierry. Mixed acoustic–entropy combustion instabilities in gas turbines. Journal of Fluid Mechanics, 749:542–576, 2014.
[35] Farisco, Federica. Thermo-acoustic characterization of the burner-turbine interface in a can-annular combustor using CFD. University of Twente, 2016.
[36] O’Connor, Jacqueline, Acharya, Vishal, and Lieuwen, Timothy. Transverse combustion instabilities: Acoustic, fluid mechanic, and flame processes. Progress in Energy and Combustion Science, 49:1–39, 2015.
[37] O’Connor, Jacqueline. Visualization of shear layer dynamics in a transversely forced flow and flame. Journal of Propulsion and Power, 31(4):1127–1136, 2015.
[38] O’Connor, Jacqueline. Disturbance-field decomposition in a transversely forced swirl flow and flame. Journal of Propulsion and Power, 33(3):764–775, 2017.
[39] O’Connor, Jacqueline and Acharya, Vishal. Development of a flame transfer function framework for transversely forced flames. in ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection, 2013.
[40] O’Connor, Jacqueline and Lieuwen, Tim. Further characterization of the disturbance field in a transversely excited swirl-stabilized flame. Journal of Engineering for Gas Turbines and Power, 134(1):011501, 2012.
[41] O’Connor, Jacqueline and Lieuwen, Tim. Recirculation zone dynamics of a transversely excited swirl flow and flame. Physics of fluids, 24(7):2893–2900, 2012.
[42] O’Connor, Jacqueline and Lieuwen, Tim. Disturbance field characteristics of a transversely excited burner. Combustion Science and Technology, 183(5):427–443, 2011.
[43] Lespinasse, Florian, Baillot, Françoise, and Boushaki, Toufik. Responses of v-flames placed in an hf transverse acoustic field from a velocity to pressure antinode. Comptes Rendus Mécanique, 341(1-2):110–120, 2013.
[44] Bourgouin, Jean-Francois, Durox, Daniel, Moeck, Jonas P, Schuller, Thierry, and Candel, Sébastien. Self-sustained instabilities in an annular combustor coupled by azimuthal and longitudinal acoustic modes. in ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection, 2013.
[45] Hauser, Martin, Lorenz, Manuel, and Sattelmayer, Thomas. Influence of transversal acoustic excitation of the burner approach flow on the flame structure. Journal of Engineering for Gas Turbines and Power, 133(4):041501, 2011.
[46] Hauser, Martin, Wagner, Michael, and Sattelmayer, Thomas. Transformation of transverse acoustic velocity of the burner approach flow into flame dynamics. in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, pp. 803–814. American Society of Mechanical Engineers Digital Collection, 2012.
[47] Hertweck, Michael, Berger, Frederik M, Hummel, Tobias, and Sattelmayer, Thomas. Impact of the heat release distribution on high-frequency transverse thermoacoustic driving in premixed swirl flames. International Journal of Spray and Combustion Dynamics, 9(3):143–154, 2017.
[48] Wolf, Pierre, Staffelbach, Gabriel, Balakrishnan, R, Roux, A, and Poinsot, Thierry. Azimuthal instabilities in annular combustion chambers. in Proceedings of the Summer Program, pp. 259–269. NASA Ames/Stanford Univ. Center for Turbulent Research, 2010.
[49] Staffelbach, Gicquel, Gicquel, LYM, Boudier, G, and Poinsot, Thierry. Large eddy simulation of self excited azimuthal modes in annular combustors. Proceedings of the Combustion Institute, 32(2):2909–2916, 2009.
[50] Wolf, Pierre, Staffelbach, Gabriel, Roux, A, Gicquel, L, Poinsot, Thierry, and Moureau, V. Massively parallel les of azimuthal thermo-acoustic instabilities in annular gas turbines. Comptes Rendus Mecanique, 337(6-7):385–394, 2009.
[51] Wolf, Pierre, Staffelbach, Gabriel, Gicquel, Laurent YM, Müller, Jens-Dominik, and Poinsot, Thierry. Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers. Combustion and Flame, 159(11):3398–3413, 2012.
[52] Saurabh, Aditya and Paschereit, Christian Oliver. Premixed flame dynamics in response to two-dimensional acoustic forcing. Combustion Science and Technology, 191(7):1184–1200, 2019.
[53] Saurabh, Aditya and Paschereit, Christian Oliver. Dynamics of premixed swirl flames under the influence of transverse acoustic fluctuations. Combustion and Flame, 182:298–312, 2017.
[54] Bauerheim, Michaël, Staffelbach, Gabriel, Worth, Nick A, Dawson, JR, Gicquel, Laurent YM, and Poinsot, Thierry. Sensitivity of les-based harmonic flame response model for turbulent swirled flames and impact on the stability of azimuthal modes. Proceedings of the Combustion Institute, 35(3):3355–3363, 2015.
[55] Bauerheim, Michaël, Cazalens, Michel, and Poinsot, Thierry. A theoretical study of mean azimuthal flow and asymmetry effects on thermo-acoustic modes in annular combustors. Proceedings of the Combustion Institute, 35(3):3219–3227, 2015.
[56] Bauerheim, Michael, Parmentier, Jean-François, Salas, Pablo, Nicoud, Franck, and Poinsot, Thierry. An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum. Combustion and Flame, 161(5):1374–1389, 2014.
[57] Poinsot, Thierry and Veynante, Denis. Theoretical and numerical combustion. RT Edwards, Inc., 2005.
[58] Acharya, Vishal S, Shin, Dong-Hyuk, and Lieuwen, Tim. Premixed flames excited by helical disturbances: Flame wrinkling and heat release oscillations. Journal of Propulsion and Power, 29(6):1282–1291, 2013.
[59] Andreini, Antonio, Facchini, Bruno, Giusti, Andrea, and Turrini, Fabio. Assessment of flame transfer function formulations for the thermoacoustic analysis of lean burn aero-engine combustors. Energy Procedia, 45:1422–1431, 2014.
[60] Shahsavari, Mohammad and Farshchi, Mohammad. Large eddy simulation of low swirl flames under external flow excitations. Flow, Turbulence and Combustion, 100(1):249– 269, 2018.
[61] Selle, Laurent, Benoit, Laurent, Poinsot, Thierry, Nicoud, Franck, and Krebs, Werner. Joint use of compressible large-eddy simulation and helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combustion and Flame, 145(1-2):194–205, 2006.
[62] Sharifi, V, Kempf, AM, and Beck, C. Large-eddy simulation of acoustic flame response to high-frequency transverse excitations. AIAA Journal, 57(1):327–340, 2018.
[63] Han, Xingsi, Li, Jingxuan, and Morgans, Aimee S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combustion and Flame, 162(10):3632–3647, 2015.
[64] Han, Xingsi and Morgans, Aimee S. Simulation of the flame describing function of a turbulent premixed flame using an open-source les solver. Combustion and Flame, 162(5):1778–1792, 2015.
[65] Crocco, Lo. Aspects of combustion stability in liquid propellant rocket motors part i: fundamentals. low frequency instability with monopropellants. Journal of the American Rocket Society, 21(6):163–178, 1951.
[66] Martin, Charles Etienne, Benoit, Laurent Jean-Louis, Sommerer, Yannick, Nicoud, Franck, and Poinsot, Thierry. Large-eddy simulation and acoustic analysis of a swirled staged turbulent combustor. AIAA journal, 44(4):741–750, 2006.
[67] Silva, Camilo Fernando, Nicoud, Franck, Schuller, Thierry, Durox, Daniel, and Candel, Sébastien. Combining a helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor. Combustion and Flame, 160(9):1743–1754, 2013.
[68] Chen, Xiaoling, Culler, Wyatt, Peluso, Stephen, Santavicca, Domenic, and O’Connor, Jacqueline. Comparison of equivalence ratio transients on combustion instability in single-nozzle and multi-nozzle combustors. in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection, 2018.
[69] Roux, Sebastien, Lartigue, G, Poinsot, Thierry, Meier, U, and Bérat, Claude. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combustion and Flame, 141(1-2):40–54, 2005.
[70] Taha, Ahmed, Vellakal, Madhu C, and Lu, Quiyue. Combustion instability in gas turbines: A review on analytical, experimental and numerical studies. in 2018 AIAA Aerospace Sciences Meeting, p. 2129, 2018.
[71] Schulze, Moritz, Hummel, Tobias, Klarmann, Noah, Berger, Frederik, Schuermans, Bruno, and Sattelmayer, Thomas. Linearized euler equations for the prediction of linear high-frequency stability in gas turbine combustors. Journal of Engineering for Gas Turbines and Power, 139(3):031510, 2017.
[72] Gikadi, Jannis. Prediction of Acoustic Modes in Combustors using Linearized Navier-Stokes Equations in Frequency Space. Ph.D. thesis, Technische Universität München, 2014.
[73] Trefethen, Lloyd N and Bau III, David. Numerical linear algebra, vol. 50. Siam, 1997.