مطالعه‌ای بر سیستم ذخیره‌سازی انرژی هوای فشرده

نوع مقاله : علمی ترویجی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

افزایش استفاده و به‌کارگیری سیستم‌‌های انرژی تجدیدپذیر به‌دلیل مداوم‌نبودن دسترسی به منابع تجدیدپذیر، نیازمند ذخیره‌‌سازی انرژی است. سیستم ذخیره‌سازی انرژی هوای فشرده یکی از سیستم‌های ذخیره‌سازی انرژی است که به‌علت مزایای متعدد آن در سال‌های اخیر بیش‌تر مورد‌توجه قرار گرفته است. در مقاله حاضر، ابتدا اهمیت و جایگاه سیستم ذخیره‌سازی انرژی هوای فشرده در مقایسه با دیگر سیستم‌‌های ذخیره‌‌سازی انرژی بررسی و سپس خلاصه‌‌ای از تاریخچه این سیستم بیان شد. در ادامه، انواع سیستم ذخیره‌سازی انرژی هوای فشرده دسته‌‌بندی شد و برخی خصوصیات، مزایا و معایب آن‌‌ بررسی گردید. سیستم‌‌های ذخیره‌سازی انرژی هوای فشرده از نظر استفاده از حرارت به سه دسته معمولی، آدیاباتیک (بی‌دررو) و ایزوترمال (هم‌‌دما) تقسیم می‌شوند. همچنین می‌توان این سیستم‌ها را از نظر ظرفیت آن‌ها به سه دسته کوچک، متوسط و بزرگ‌مقیاس تقسیم کرد. در‌این‌بین، سیستم‌‌های کوچک‌مقیاس ‌‌به‌‌دلیل مزیت‌‌های فنی و اقتصادی، مانند کنترل بهتر اتلاف حرارت و کاهش هزینه‌‌های سرمایه‌‌ای و تعمیر و نگه‌‌داری، مورد‌توجه بیش‌‌تری قرار گرفته است. همچنین به‌منظور تحلیل انرژی سیستم، یک سیستم ذخیره‌سازی انرژی هوای فشرده دیاباتیک، مدل‌سازی و شبیه‌سازی نرم‌افزاری شد و مورد بررسی قرار گرفت.

کلیدواژه‌ها


[1] Quaschning, Volker V. Renewable Energy and Climate Change. Wiley-Blackwell, Hoboken, New Jersey, 2nd editio ed. , 2019.
[2] Child, Michael, Kemfert, Claudia, Bogdanov, Dmitrii, and Breyer, Christian. Flexible electricity generation, grid exchange and storage for the transition to a 100 Renewable Energy, 139:80–101, 2019.
[3] Creutzig, Felix, Breyer, Christian, Hilaire, Jérôme, Minx, Jan, Peters, Glen P., and Socolow, Robert. The mutual dependence of negative emission technologies and energy systems. Energy & Environmental Science, 12(6):1805– 1817, 2019.
[4] Letcher, Trevor M. Storing electrical energy, pp. 365–377. Academic Press, 2018.
[5] Denholm, Paul and Mai, Trieu. Timescales of energy storage needed for reducing renewable energy curtailment. Renewable Energy, 130:388–399, 2019.
[6] Zakeri, Behnam and Syri, Sanna. Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42:569–596, 2015.
[7] Amirlatifi, Amin, Vahedifard, Farshid, Degtyareva, Maria, Turner, Richard N., Sullivan, Brian, Santra, Ritabrata, and Esposito, Richard A. Reusing abandoned natural gas storage sites for compressed air energy storage. Environmental Geotechnics, pp. 1–14, 2019.
[8] Li, Yaowang, Miao, Shihong, Yin, Binxin, Yang, Weichen, Zhang, Shixu, Luo, Xing, and Wang, Jihong. A real-time dispatch model of caes with considering the part-load characteristics and the power regulation uncertainty. International Journal of Electrical Power and Energy Systems, 105(July 2018):179–190, 2019.
[9] Akinyele, D. O. and Rayudu, R. K. Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments, 8:74–91, 2014.
[10] Malekan, Mohammad, Khosravi, Ali, and Zhao, Xiaowei. The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale caes system. Applied Thermal Engineering, 146:146–159, 2019.
[11] Kalhammer, F. R. and Schneider, T. R. Energy storage. Annual Review of Energy, 1(1):311–343, 1976.
[12] Gay, F.W. Means for storing fluids for power generation, 1948.
[13] Mattick, W. and Haddenhorst, O. Weber. Huntorf: the world’s first 290-mw gas turbine air-storage peaking plant.
[14] Allen, R. D., Doherty, T. J., and Kannberg, L. D. Summary for policymakers. Report 9788578110796, U.S. Department of Energy, 1985.
[15] Glendenning, I., Chew, P. E., Grant, R., Glanwille, R., and Moye, M. H. Technical and economic assessment of advanced compressed air storage (acas) concepts. Report, U.S. Department of Energy, 1979.
[16] Zaloudek, F. R. and Reilly, R. W. An assessment of secondgeneration compressed-air energy-storage concepts. Report PNL-3978; Other: ON: DE82019513, U.S. Department of Energy, 1982.
[17] McGrail, B. P., Cabe, J., Davidson, C., Knudsen, F. S., Bacon, D., Bearden, M., Chamness, M., Horner, J., Reidel, S., Schaef, T., Spane, F., and Thorne, P. Compressed air energy storage : Grid-scale technology for renewables integration in the pacific northwest. Report, Pacific Northwest National Laboratory, 2013.
[18] Goodson, J. O. History of first us compressed air energy storage (caes) plant (110-mw-26 h) volume 1: Early caes development. Report, Electric Power Research Institute, 1992.
[19] Ibrahim, Hussein, Belmokhtar, Karim, and Ghandour, Mazen. Investigation of usage of compressed air energy storage for power generation system improving - application in a microgrid integrating wind energy. Energy Procedia, 73:305–316, 2015.
[20] Unknown. Seneca compressed air energy storage (caes) project. Report, National Energy Technology Laboratory, 2012.
[21] Ch2Mhill. revention of significant deterioration: greenhouse gas permit application. Report, 2012.
[22] Li, Kou. Energy storage activities at new york power authority. New York Power Authority.
[23] Smud. Smud 2014 ten-year transmission assessment plan. Report, 2014.
[24] Press, The Associated. Nppd to test underground air storage. lincoln journal star 2012. Online, 2012.
[25] Gaelectric Energy Storage, Ltd. Report no. spire20150630 provided by gaelectric energy storage ltd to university of ulster. Report, 2015.
[26] Jakiel, Christoph, Zunft, Stefan, and Nowi, Andreas. Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the european project aa-caes. International Journal of Energy Technology and Policy, 5(3):296–306, 2007.
[27] AG, Rheinisch Westfälisches Elektrizitätswerk. Adele– adiabatic compressed-air energy storage for electricity supply. Report, 2010.
[28] Wang, Jidai, Lu, Kunpeng, Ma, Lan, Wang, Jihong, Dooner, Mark, Miao, Shihong, Li, Jian, and Wang, Dan. Overview of compressed air energy storage and technology development. Energies, 10(7):991–991, 2017.
[29] Fong, Danielle A., Crane, Stephen E., Berlin Jr., Edwin P., Pourmousa Abkenar, Amirhossein, Mahalatkar, Kartikeya, Hou, Yongxi, and Bowers, Todd. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange, 2010.
[30] Bollinger, B R. System and method for rapid isothermal gas expansion and compression for energy storage, 2010.
[31] Ingersoll, Eric, Aborn, Justin, and Chomyszak, Stephen. Compressor and/or expander device, 2010.
[32] Siano, Pierluigi. Demand response and smart grids - a survey. Renewable and Sustainable Energy Reviews, 30:461– 478, 2014.
[33] Vytelingum, Perukrishnen, Voice, Thomas D., Ramchurn, Sarvapali D., Rogers, Alex, and Jennings, Nicholas R. Agent-based micro-storage management for the smart grid. Analysis, 1(Aamas):39–46, 2010.
[34] Akhil, Abbas A., Huff, Georgianne, Currier, Aileen B., Kaun, Benjamin C., Rastler, Dan M., Chen, Stella Bingqing, Cotter, Andrew L., Bradshaw, Dale T., and Gauntlett, William D. Doe / epri 2013 electricity storage handbook in collaboration with nreca. Report, Sandia National Laboratories, 2013.
[35] Ibrahim, Hussein and Perron, Jean. Investigations des differentes alternatives renouvelables er hybrides pour l’électrification des sites isolés :rapport interne laboratoire de recherche en Énergie Éolienne. Report, LREE (UQAR), LIMA (UQAC), 2008.
[36] Esa reports | energy storage association. Online.
[37] Kema. Market evaluation for energy storage in the united states. Report, Copper Development Association, 2012.
[38] Ibrahim, Hussein and Ilinc, Adrian. Contribution of the Compressed Air Energy Storage in the Reduction of GHG - Case Study: Application on the Remote Area Power Supply System, pp. 337–364. InTech, London, 2012.
[39] Rogers, A., Henderson, A., Wang, X., and Negnevitsky, M. Compressed air energy storage: Thermodynamic and economic review. 2014 IEEE PES General Meeting | Conference & Exposition, pp. 1–5, 2014.
[40] Kaabi Nejadian, Abdolrazzagh. Energy Storage Technology. Tehran, 2013.
[41] He, Yang, Chen, Haisheng, Xu, Yujie, and Deng, Jianqiang. Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system. Energy, 165:349–359, 2018.
[42] Lemofoue, Sylvain. Investigation and optimisation of hybrid electricity storage systems based on compressed air and supercapacitors. Thesis, 2006.
[43] Rufer, A. and Lemofouet, S. A hybrid energy storage system based on compressed air and supercapacitors with maximum efficiency point tracking (mept). IEEE Transactions on Industrial Electronics, 53(4):1105–1115, 2006.
[44] Crotogino, Fritz, Mohmeyer, Klausuwe, and Scharf, Roland. Huntorf caes: More than 20 years of successful operation. Solution Mining Research Institute (SMRI) Spring Meeting, (April):351–357, 2001.