مشخصه‌یابی عیوب کریستالی مرز دوقلویی در ابررسانای دمابالا YBCO

نوع مقاله : علمی ترویجی

نویسندگان

1 استادیار، دانشکده علوم پایه، گروه فیزیک مهندسی، دانشگاه صنعتی قم

2 دانشیار، دانشکده فیزیک، دانشگاه کاشان

چکیده

دوقلویی یکی از مکانیسم‌های اصلی تغییر شکل پلاستیکی در کریستال‌ها است که خواص مربوط به آن از مسائل مهم در علم مواد به شمار می‌رود. یکی از مهم‌ترین ویژگی‌های ریزساختاری مشاهده شده در ابررسانای دمابالای YBa2Cu3O7-y ، (YBCO) دوقلویی است که به سبب استحاله فاز تتراگونال به اورتورمبیک رخ می‌دهد. مشکل عمده در کاربردهای صنعتی ابررساناهای دمابالا چگالی جریان بحرانی (Jc) پایین است. مرزهای دوقلویی در YBCO که از نوع نواقص صفحه‌ای می‌باشند، مراکز اصلی میخ‌کوبی شار محسوب می‌شوند که موجب افزایش چگالی جریان بحرانی می‌گردند. بنابراین طراحی ساختارهای دوقلویی YBCO در هنگام تولید برای بهبود خواص الکتریکی، مغناطیسی و جهت بهره‌برداری تجاری آن ضروری می‌باشد. با توجه به تعدد گزارش‌های موجود در این زمینه و نتایج بعضاً متناقض، در این مقاله کلیه نتایج تجربی و نظری منتشرشده در ارتباط با مرزهای دوقلویی و تأثیر آن بر خواص مختلف YBCO مورد بحث و بررسی قرار می‌گیرد.

کلیدواژه‌ها


[1] Rao, C. N. R and Raychaudhuri, A. K. High Temperature Superconductors, pp. 12–4. CRC Press, 1996.
[2] Khoshnevisan, B, Ross, D K, Broom, D P, and Babaeipour, M. Observations of twinning in YBa2Cu3O6−x, 0 < x < 1, at high temperatures. Journal of Physics: Condensed Matter, 14(41):9763–9778, oct 2002.
[3] Khare, Neeraj. Handbook of High-Temperature Superconductor. CRC Press, 2003.
[4] Jongprateep, O. and Siu-Wai Chan. Twin spacing and its correlation with critical current density in melt-textured YBCO with yttria nanoparticle addition. IEEE Transactions on Applied Superconductivity, 13(2):3502–3505, June 2003.
[5] Mercer, M. A study of Oxygen in YBCO H-Tc superconducting material. Ph.D. thesis, University of Salford, 1996.
[6] Setoyama, Yui, ichi Shimoyama, Jun, Motoki, Takanori, Kishio, Kohji, Awaji, Satoshi, Kon, Koichi, Ichikawa, Naoki, Inamori, Satoshi, and Naito, Kyogo. Effects of densification of precursor pellets on microstructures and critical current properties of ybco melt-textured bulks. Physica C: Superconductivity and its Applications, 531:79 – 84, 2016.
[7] Ravi, S. and Seshu Bai, V. ac-susceptibility study of the 110-K superconducting phase of Bi-Sr-Ca-Cu-O. Phys. Rev. B, 49:13082–13088, May 1994.
[8] Chen, Yuanqing, Bian, Weibai, Huang, Wenhuan, Tang, Xinni, Zhao, Gaoyang, Li, Lingwei, Li, Na, Huo, Wen, Jia, Jiqiang, and You, Caiyin. High critical current density of YBa2Cu3O7−x superconducting films prepared through a duv-assisted solution deposition process. Scientific Reports, 6(1):38257, 2016.
[9] Yang, T., Wang, Z. H., Zhang, H., Fang, J., Nie, Y., Qiu, L., and Ding, S. Y. Effective activation energy and phase diagram in the er-doping MTG-YBa2Cu3O7−d crystal. 384(1-2):130–136, Jan 2003.
[10] Radzyner, Y., Shaulov, A., and Yeshurun, Y. Unified order-disorder vortex phase transition in high-Tc superconductors. Phys. Rev. B, 65:100513, Feb 2002.
[11] Hammerl, G., Schmehl, A., Schulz, R. R., Goetz, B., Bielefeldt, H., Schneider, C. W., Hilgenkamp, H., and Mannhart, J. Enhanced supercurrent density in polycrystalline YBa2Cu3O7−d at 77 K from calcium doping of grain boundaries. Nature, 407(6801):162–164, 2000.
[12] Muller, D. Twin-boundary characteristics of melt-textured YBa2Cu3O7−x. Philosophical Magazine Letters, 73(2):63– 70, 1996.
[13] Zhu, Yimei and Suenaga, Masaki. Twinning dislocations in YBa2Cu3O7−δ superconductor. Philosophical Magazine A, 66(3):457–471, 1992.
[14] Barry, J. C. Oxygen ordering and twinning in YBa2Cu3O7−x. Journal of Electron Microscopy Technique, 8(3):325–337, 1988.
[15] Ossipyan, Yu.A., Timofeev, V.B., and Schegolev, I.F. Physical properties of YBa2Cu3O7−x single crystals. Physica C: Superconductivity, 153-155:1133 – 1137, 1988. Proceedings of the International Conference on High Temperature Superconductors and Materials and Mechanisms of Superconductivity Part II.
[16] Khoshnevisan, B. Diffraction studies of phase structure transition in the high temperature superconductor YBCO. Ph.D. thesis, University of Salford, 2002.
[17] Zhu, Yimei, Suenaga, Masaki, and Xu, Youwen. Tem studies on twin boundary in YBa2Cu3O7 and YBa2(CU0.98M0.02)3O7 (M=Zn, Al). Journal of Materials Research, 5(7):1380–1387, 1990.
[18] Antal, V, Zmorayová, K, Kováč, J, Kavečanský, V, Diko, P, Eisterer, M, and Weber, H W. The influence of annealing in flowing argon on the microstructural and superconducting properties of al doped YBCO bulks. Superconductor Science and Technology, 23(6):065014, may 2010.
[19] Siegrist, T., Schneemeyer, L. F., Waszczak, J. V., Singh, N. P., Opila, R. L., Batlogg, B., Rupp, L. W., and Murphy, D. W. Aluminum substitution in Ba2YCu3O7. Phys. Rev. B, 36(16):8365–8368, Dec 1987.
[20] Sahoo, Bibekananda, Routray, Krutika L., Samal, D., and Behera, Dhrubananda. Effect of artificial pinning centers on YBCO high temperature superconductor through substitution of graphene nano-platelets. Materials Chemistry and Physics, 223:784 – 788, 2019.
[21] Boyko, V S and Chan, Siu-Wai. Twin microstructure design in the high-temperature superconductor YBa2Cu3O7−δ with nanoparticles addition for enhanced Jc. Superconductor Science and Technology, 30(11):115013, oct 2017.
[22] Roy, T. and Mitchell, T. E. Twin boundary energies in YBa2Cu3O7−x and La2CuO4. Philosophical Magazine A, 63(2):225–232, 1991.
[23] Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C. The effect of grain size on microstructure and stress relaxation in polycrystalline YBa2Cu3O7−δ. Journal of Materials Research, 4(2):248– 256, 1989.
[24] Khachaturian, A. G. Theory of structural transformations in solids. Wiley, New York, 1983.
[25] Goncharov, V. A. and Suvorov, E. V. Electron-Microscopy Investigation of the Structure of Defects, pp. 5–21. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.
[26] Chumbley, L.S., Kramer, M.J., Kim, M.R., and Laabs, F.C. Estimation of twin wall energy by measurement of twin spacing. Materials Science and Engineering: A, 124(2):L19 – L21, 1990.
[27] Boiko, Y., Jaeger, H., Aslan, M., Schulze, K., and Petzow, G. Elastic twins in YBa2Cu3O7 crystals. Materials Letters, 11(5):207 – 211, 1991.
[28] Lagraff, John R. and Payne, David A. Oxygen stoichiometry and mobility effects on domain wall motion in ferroelastic YBa2Cu3O7−δ. Ferroelectrics, 130(1):87–105, 1992.
[29] Chopra, M., Chan, S. W., Boyko, V. S., Meng, R. L., and Chu, C. W. in Batlogg, B., Chu, C. W., Chu, W. K., Gubser, D. U., and Muller, K. A., eds. , The Proceeding of the 10th Anniversary High Temperature Superconductors Workshop, Houston, Texas, March 1996, p. 175, Singapore, 1996. World Scientific.
[30] Boyko, V. S., Chan, Siu-Wai, and Chopra, M. Shape of a twin as related to the inelastic forces acting on twinning dislocations in YBa2Cu3O7−δ. Phys. Rev. B, 63:224521, May 2001.
[31] Mei, Linfeng, Boyko, V.S., and Chan, Siu-Wai. Twin engineering for high critical current densities in bulk YBa2Cu3O7−δ. Physica C: Superconductivity, 439(2):78 – 84, 2006.
[32] Diko, P. and Šuster, D. Influence of 211 particles on twin spacing in top-seeded melt-growth YBCO bulk superconductors. Journal of Applied Physics, 105(6):063503, 2009.
[33] Mohammadi, Mahnaz, Khoshnevisan, Bahram, and Hashemifar, S. Javad. Twin boundary energy and characterization of charge redistribution near the twin boundaries of cupperate superconductors. Physica C: Superconductivity and its Applications, 507:41 – 46, 2014.
[34] Khoshnevisan, Bahram and Mohammadi, Mahnaz. Effects of k and ca doping on twin boundary energy of cupperate superconductors. Physica C: Superconductivity and its Applications, 523:5 – 9, 2016.
[35] Rouco, V, Palau, A, Guzman, R, Gazquez, J, Coll, M, Obradors, X, and Puig, T. Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites. Superconductor Science and Technology, 27(12):125009, nov 2014.
[36] Gazquez, J, Coll, M, Roma, N, Sandiumenge, F, Puig, T, and Obradors, X. Structural defects in trifluoroacetate derived YBa2Cu3O7 thin films. Superconductor Science and Technology, 25(6):065009, April 2012.
[37] Miura, M, Maiorov, B, Willis, J O, Kato, T, Sato, M, Izumi, T, Shiohara, Y, and Civale, L. The effects of density and size of BaMO3(M=Zr, Nb, Sn) nanoparticles on the vortex glassy and liquid phase in (Y, Gd)Ba2Cu3Oy coated conductors. Superconductor Science and Technology, 26(3):035008, Jan 2013.
[38] Campbell, A. M., Evetts, J. E., and Dew-Hughes, D. Pinning of flux vortices in type II superconductors. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 18(152):313–343, 1968.
[39] Dimos, D., Chaudhari, P., and Mannhart, J. Superconducting transport properties of grain boundaries in yba2 cu3o7 bicrystals. Phys. Rev. B, 41:4038–4049, Mar 1990.
[40] High-temperature superconductivity (appendix to chapter 16). in Burns, Gerald, ed. , Solid State Physics, pp. 757 – 791. Academic Press, 1985.
[41] Murakami, M. Processing of bulk YBaCuO. Superconductor Science and Technology, 5(4):185–203, April 1992.
[42] Daeumling, M., Seuntjens, J. M., and Larbalestier, D. C. Oxygen-defect flux pinning, anomalous magnetization and intra-grain granularity in YBa2Cu3O7−d. Nature, 346(6282):332–335, 1990.
[43] Kwok, W. K., Welp, U., Crabtree, G. W., Vandervoort, K. G., Hulscher, R., and Liu, J. Z. Direct observation of dissipative flux motion and pinning by twin boundaries in YBa2Cu3O7−δ single crystals. Phys. Rev. Lett., 64:966– 969, Feb 1990.
[44] Gyorgy, E. M., van Dover, R. B., Schneemeyer, L. F., White, A. E., O’Bryan, H. M., Felder, R. J., Waszczak, J. V., Rhodes, W. W., and Hellman, F. Sharp angular sensitivity of pinning due to twin boundaries in YBa2Cu3O7. Applied Physics Letters, 56(24):2465–2467, 1990.
[45] Durán, C. A., Gammel, P. L., Bishop, D. J., Rice, J. P., and Ginsberg, D. M. Comment on “role of twin boundaries in the magnetic flux penetration in YBa2Cu3O7−δ”. Phys. Rev. Lett., 74:3712–3712, May 1995.
[46] Welp, U., Gardiner, T., Gunter, D. O., Veal, B. W., Crabtree, G. W., Vlasko-Vlasov, V. K., and Nikitenko, V. I. Welp et al. reply:. Phys. Rev. Lett., 74:3713–3713, May 1995.
[47] Asaoka, Hidehito, Kazumata, Yukio, Takei, Humihiko, and Noda, Kenji. Effect of twin boundaries on flux pinning in YBa2Cu3Ox single crystals. Physica C: Superconductivity, 268(1):14 – 20, 1996.
[48] Salama, K., Lee, D. F., and Chaud, X. Flux pinning in bulk oriented-grained YBa2Cu3Ox/Ag composites: Effects of Ag and Y2BaCuO5 inclusions. in Hayakawa, Hisao and Koshizuka, Naoki, eds. , Advances in Superconductivity IV, pp. 23–27, Tokyo, 1992. Springer Japan.
[49] Prigozhin, Leonid. The bean model in superconductivity: Variational formulation and numerical solution. Journal of Computational Physics, 129(1):190 – 200, 1996.
[50] Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszczak, J. V. Anisotropic critical currents in YBa2Cu3O7 analyzed using an extended bean model. Applied Physics Letters, 55(3):283–285, 1989.
[51] Palau, A., Rouco, V., Luccas, R.F., Obradors, X., and Puig, T. Nanowall pinning for enhanced pinning force in YBCO films with nanofabricated structures. Physica C: Superconductivity and its Applications, 506:178 – 183, 2014.
[52] Swartzendruber, L. J., Kaiser, D. L., Gayle, F. W., Bennett, L. H., and Roytburd, A. Low-field flux pinning in twinned and detwinned single crystals of YBa2Cu3O7−x. Applied Physics Letters, 58(14):1566–1568, Apr 1991.
[53] Kaiser, D. L., Gayle, F. W., Swartzendruber, L. J., Bennett, L. H., and McMichael, R. D. Effect of twin boundaries on flux pinning in YBa2Cu3O7−x at low and intermediate magnetic fields. Journal of Applied Physics, 70(10):5739– 5741, 1991.
[54] Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G., and Liu, J. Z. Magnetization hysteresis and flux pinning in twinned and untwinned YBa2Cu3O7−δ single crystals. Applied Physics Letters, 57(1):84–86, 1990.
[55] Fujimoto, Hiroyuki, Taguchi, Takahiro, Murakami, Masato, and Koshizuka, Naoki. The effect of twin boundaries on the flux pinning in MPMG processed YBCO. Physica C: Superconductivity, 211(3):393 – 403, 1993.
[56] Maggio-Aprile, Ivan, Renner, Christophe, Erb, Andreas, Walker, Eric, and Fischer, Øystein. Critical currents approaching the depairing limit at a twin boundary in yba2cu3o7-d. Nature, 390(6659):487–490, 1997.
[57] Fang, M. M., Kogan, V. G., Finnemore, D. K., Clem, J. R., Chumbley, L. S., and Farrell, D. E. Possible twinboundary effect upon the properties of high-Tc superconductors. Phys. Rev. B, 37:2334–2337, Feb 1988.
[58] Maggio-Aprile, I., Renner, Ch., Erb, A., Walker, E., and Fischer, O. Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ. Phys. Rev. Lett., 75:2754–2757, Oct 1995.
[59] Watanabe, Hirohito, Kasai, Yuji, Mochiku, Takashi, Sugishita, Akimitsu, Iguchi, Ienari, and Yamaka, Eiso. Electrical resistivity, critical current and crystal orientation of the sintered Y-Ba-Cu-O compounds. Japanese Journal of Applied Physics, 26(Part 2, No. 5):L657–L659, may 1987.
[60] Ogale, S. B., Dijkkamp, D., Venkatesan, T., Wu, X. D., and Inam, A. Current transport in high-Tc polycrystalline films of Y-Ba-Cu-O. Phys. Rev. B, 36:7210–7213, Nov 1987.
[61] Deutscher, G. and Müller, K. A. Origin of superconductive glassy state and extrinsic critical currents in high-Tc oxides. Phys. Rev. Lett., 59:1745–1747, Oct 1987.
[62] Horovitz, B., Barsch, G. R., and Krumhansl, J. A. Twinboundary dynamics and properties of high-Tc superconductors. Phys. Rev. B, 36:8895–8898, Dec 1987.