بررسی عوامل تأثیرگذار بر استحکام قطعات ساخته ‌‌شده توسط چاپگرهای سه ‌بعدی FFF

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد

چکیده

ساخت افزودنی مبتنی بر اکستروژن یک روش تولید نوظهور است که امروزه بسیار مورد توجه قرار گرفته و اساس کار چاپگرهای سه‌بعدی FFF است. در این روش، پلیمر ذوب‌شده از طریق یک نازل به ‌صورت لایه به لایه روی هم قرار می‌گیرد تا یک جسم سه‌بعدی ایجاد شود. به دلیل انجماد سریع لایه‌ها ممکن است فضاها و حفره‌هایی بین لایه‌ها ایجاد شود که این فضاهای خالی منجر به کاهش خواص مکانیکی از جمله استحکام قطعات می‌شوند. از آن‌جا که پیش‌بینی و بهبود خواص مکانیکی از چالش‌های این روش تولید است، هدف از این مطالعه، بررسی عوامل موثر بر استحکام قطعات تولیدشده توسط FFF است. از جمله عوامل تأثیرگذار می‌توان به دمای نازل، درصد پرشدن، راستای نمونه، زاویه رسوب‌گذاری رشته‌ها، ضخامت لایه و قطر نازل اشاره کرد. طبق نتایج پژوهش‌های پیشین می‌توان گفت که افزایش دمای نازل، درصد پرشدن و قطر نازل و کاهش ضخامت لایه منجر به افزایش سطح تماس رشته‌های ذوب‌شده و همچنین کاهش فضاهای خالی بین رشته‌ها می‌شود و بدین ترتیب استحکام قطعات تولیدشده بهبود می‌یابد. هم‌ چنین، استفاده از زاویه رسوب‌ گذاری هم‌جهت با محور کشش می‌تواند تا حد زیادی استحکام قطعات را افزایش دهد.

کلیدواژه‌ها

موضوعات


[1] Gibson, I., Rosen, D., Stucker, B., Additive Manufacturing Technologies, Springer, (2015).
 
[2] Mohamed, O.A., Masood, S.H., and Bhowmik, J.L., Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Adv. Manuf, Vol. 3, No. 1, pp. 42–53, (2015).
 
[3] Zaman, U.K.U., Boesch, E., Siadat, A., Rivette, M., Baqai, A., Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments, Int J Adv Manuf Technol, Vol. 101, pp. 1215–1226, (2019).
 
[4] Lee, C., Chua, C., Cheah, C., Tan, L., Feng, C., Rapid investment casting: direct and indirect approaches via fused deposition modelling, Int. J. Adv. Manuf. Technol, Vol. 23, pp. 93–101, (2004).
 
[5] Zhang, B., Seong, B., Nguyen, V., Byun, D., 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques, Journal of Micromechanics and Microengineering, Vol. 26, No. 2, pp. 25015, (2016).
 
 [6] Van Noort, R., The future of dental devices is digital, Dental Materials, Vol. 28, No. 1, pp. 3–12, (2012).
 
[7] Coogan, T.J., Kazmer, D.O., Healing simulation for bond strength prediction of FDM, Rapid Prototyping Journal, Vol. 23, No. 3, pp. 551–561, (2017).
 
[8] Bellini, A., Güçeri, S., Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyping Journal, Vol. 9, No. 4, pp. 252–264, (2003).
 
[9] Kuznetsov, V.E., Solonin, A.N., Tavitov, A., Urzhumtsev, O., and Vakulik, A., Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process, Prototyping Journal, Vol. 26, No. 1, pp. 107–121, (2020).
 
[10] Raju, M., Gupta, M.K., Bhanot, N., Sharma, V., A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters, J Intell Manuf, Vol. 30, No. 7, pp. 2743–2758, (2019).
 
[11] Triyono, J., Sukanto, H., Saputra, R., Smaradhana, D., The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material, Open Engineering, Vol. 10, No. 1, pp. 762–768, (2020).
 
[12] Asgari, A., Dadgar, Y., and Morad Sheikhy, M., Investigation of the effect of process variables on the mechanical properties of printed parts made of polyoxymethylene using a 3D printer by Fused Deposition Modeling (FDM), Karafan, Vol. 18, No. 1, pp. 167-187, (2021). (in Persian)
 
[13] Bakır, A., Atik, R., and Özerinç, S., Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts, Appl Polym, Vol. 138, No. 3, pp. 49709–49721, (2020).
 [14] Jatti, V., Jatti, S., and Patel, A., A study on effect of fused Deposition modeling process parameters on mechanical properties, International Journal of Scientific & Technology Research, Vol. 8, No. 11, pp. 689–693, (1994).
 
 [15] Vo, B., Ajibade, A., and Rosengren, M., The effect of 3D printing temperature on the mechanical properties of polypropylene, Journal of Undergraduate Chemical Engineering Research, Vol. 8, No. 1, pp. 24–31, (2019).
 
[16] Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A., Experimental optimization of fused deposition modelling processing parameters: A design-for-manufacturing approach, Procedia Manufacturing, Vol. 10, No. 1, pp. 791–803, (2017).
 
[17] Charlon, S., Boterff, J., and Soulestin, J., Fused filament fabrication of polypropylene: Influence of the bead temperature on adhesion and porosity, Additive Manufacturing, Vol. 38, No. 1, pp. 1–8, (2021).
 
[18] Wang, P., Zou, B., Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK, Chinese Journal of Aeronautics, Vol. 1, No. 5, pp. 236–246, (2021).
 
[19] Ziemian, S., Okwara, M., and Ziemian, C.W., Tensile and fatigue behavior of layered acrylonitrile butadiene styrene, Rapid Prototyping Journal, Vol. 21, No. 3, pp. 270–278, (2015).
 
[20] Nidagundi, V., Keshavamurthy, R., and Prakash, C., Studies on parametric optimization for fused deposition modelling process, Materials Today, Vol. 2, No. 4, pp. 1691–1699, (2015).
 
[21] Hikmat, M., Rostam, S., and Ahmed, Y., Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology, Results in Engineering, Vol. 11, No. 100264, pp. 1–10, (2021).
 
[22] Vicente, C., Martins, T., Leite, M., Ribeiro, A.,      Influence of fused deposition modeling parameters on the mechanical properties of ABS parts, Polym Adv Technol, Vol. 33, No. 3, pp. 501–507, (2020).
 [23] Melenka, G., Schofield, J., Dawson, M., Carey, J.,  Desktop 3D printer material properties and dimensional accuracy, Rapid Prototyping Journal, Vol. 21, No. 5, pp. 618–627, (2015).
 
 [24] Heidari, M., Ezati, N., Sadeghi, P., and Badrossamay MR., Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method, Journal of Thermoplastic Composite Materials, Vol. 118, No. 81746, pp. 1-18, (2020). (in Persian)
 
[25] Radhwan, M., Shayfull, Z., Hadj Abdellah, A., Irfan, A., and Kamarudin, K., Optimization parameter effects on the strength of 3D printing process using taguchi method, AIP Conference Proceedings, Vol. 2129, No. 1, pp. 1–6, (2019).
 
[26] Baptista, R., Guedes, M., Pereira, M.F.C., Maurício, A., Carrelo, H., and Cidade, T., On the effect of design and fabrication parameters on mechanical performance of 3D printed PLA scaffolds, Bioprinting, Vol. 20, No. 96, pp. 1–17, (2020).
 
[27] Azdast, A., Hasanzadeh, R., Polylactide scaffold fabrication using a novel combination technique of fused deposition modeling and batch foaming: dimensional accuracy and structural properties, The International Journal of Advanced Manufacturing Technology, Vol. 114, pp. 1309–1321, (2021). (in Persian)
 
[28] Hasanzadeh, R., Azdast, T., Optimization of FDM 3D printing process parameters of biodegradable poly lactic acid polymeric samples, Modares Mechanical Engineering., Vol. 21, No. 2, pp. 69-78, (2021). (in Persian)
 
[29] Hernandez, S., Gonzalez, D., and Jérusalem, A., Design of FDM 3D printed polymers: an experimental-modelling methodology for mechanical property prediction, Materials & Design, Vol. 188, No. 108414, pp. 1–27, (2020).
 
[30] Khatwani, J., Srivastava, V., Effect of process parameters on mechanical properties of solidified PLA parts fabricated by 3D printing process, 3D Printing and Additive Manufacturing Technologies, Vol. 1, No. 1, pp. 95–104, (2018).