روکش‌کاری لیزری در سال‌های اخیر

نوع مقاله : علمی ترویجی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد

2 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد

3 دانشجوی کارشناسی، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد

4 استاد، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد

چکیده

فرایند روکش‌کاری لیزری را می‌توان از جمله حوزه‌های جذاب و پیچیده لیزر نامبرد. در سال‌های اخیر حوزه‌های مطالعاتی مختلفی برای روکش‌کاری لیزر معرفی شده‌است. هدف از مطالعه حاضر معرفی ابعاد مختلف این حوزه‌ها به گونه‌ای کاربردی است. در این راستا، دلایل برتری فرایند روکش‌کاری لیزری نسبت به سایر روش‌های روکش‌کاری با معرفی مطالعات مرتبط، بررسی خواهندشد. با توجه به پیچیدگی روکش‌کاری لیزری، در بخشی جداگانه این علم به بیانی ساده معرفی می‌شود. سپس از دیدگاه مطالعات انجام‌شده، به مقایسه انواع فرایندهای لیزری پرداخته می‌شود. در ادامه نیز تأثیر پارامترهای اصلی فرایند نظیر توان، قطر پرتوی لیزر، سرعت پیمایش، نرخ تغذیه و گاز محافظ بر پارامترهای روکش حاصل مانند سختی، رقت، تخلخل و دمای حوضچه مذاب با ذکر مطالعات مرتبط بررسی خواهندشد. به علاوه، تأثیر پارامترهای فرعی فرایند نظیر هم‌پوشانی، جهت مسیرها، پیش‌گرم و پس‌گرم بر پارامترهای روکش مانند استحکام، بیشینه تغذیه و سختی روکش با بهره‌گیری از مطالعات سال‌های اخیر معرفی خواهندشد. بدین ترتیب، حوزه‌های مطالعاتی روکش‌کاری که در سال‌های اخیر بدان پرداخته شده‌است، برای محققان و صنعتگران این تکنولوژی به گونه‌ای کاربردی دردسترس خواهدبود.

کلیدواژه‌ها

موضوعات


[۱] نبوی, سیده فاطمه, فرشیدیانفر, انوشیروان, و فرشیدیان‌فر, محمدحسین. اساس لیزر و کاربرد آن در صنعت روز. مجله علمی مهندسی مکانیک, 28(4):61-71,
1398.
[2] Ion, John. Laser processing of engineering materials: principles, procedure and industrial application. Elsevier, 2005.
[3] Liu, R., Wang, Z., Sparks, T., Liou, F., and Newkirk, J. 13 - aerospace applications of laser additive manufacturing. in Brandt, Milan, ed. , Laser Additive Manufacturing, Woodhead Publishing Series in Electronic and Optical Materials, pp. 351–371. Woodhead Publishing, 2017.
[4] SHIBATA, Kimihiro. Recent automotive applications of laser processing in japan. The Review of Laser Engineering, 36(APLS):1188–1191, 2008.
[5] Laser Drilling Research and Application: An Update, vol. All Days of SPE/IADC Indian Drilling Technology Conference and Exhibition, 10 2006.
[6] Roland, Frank, Manzon, Luciano, Kujala, Pentti, Brede, Markus, and Weitzenbock, Jan. Advanced Joining Techniques in European Shipbuilding. Journal of Ship Production, 20(03):200–210, 08 2004.
[7] Toyserkani, Ehsan, Khajepour, Amir, and Corbin, Stephen F. Laser cladding. CRC press, 2004.
[8] Laser processing market with covid-19 impact analysis by laser type (solid lasers, liquid lasers, gas lasers), configuration (fixed beam, moving beam, hybrid), revenue (system revenue , laser revenue), application, end-user industry, and region - global forecast to 2025, 2020. https://www.marketsandmarkets.com/MarketReports/Laser-Cutting-Boring-and-EngravingMachines-Market-611.html.
[9] Vilar, Rui. Laser cladding. Journal of laser applications, 11(2):64–79, 1999.
[10] Rickerby, D.S. and Matthews, A. Advanced Surface Coatings: A Handbook of Surface Engineering. Blackie, 1991.
[11] Development and Application of Dabber Gas Tungsten Arc Welding for Repair of Aircraft Engine, Seal Teeth, vol. Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery of Turbo Expo: Power for Land, Sea, and Air, 04 1982. V002T02A005.
[12] Yang, Bangjian, Fu, Zhenghong, Li, Ting, Shan, Meile, Guo, Kang, Chen, Bing, Lu, Wei, Gou, Guoqing, and Gao, Wei. Microstructure and fracture toughness properties of CMT repairing welded 7075-t651 MIG welding joint. Materials Research Express, 6(12):1265d6, jan 2020.
[۱۳] آذرگمان, مجید و فورگی نژاد, ابوالفضل. مدلسازی فازی ضخامت لایه در فرایند لایه‌نشانی به‌کمک لیزر پالسی و بهینه‌سازی آن با الگوریتم اجتماع ذرات. مجله علمی مهندسی مکانیک, 26(3):115-124, 1396.
[14] Colaço, R., Costa, L., Guerra, R., and Vilar, R. A Simple Correlation Between the Geometry of Laser Cladding Tracks and the Process Parameters, pp. 421–429. Springer Netherlands, Dordrecht, 1996.
[15] Heigel, J.C., Gouge, M.F., Michaleris, P., and Palmer, T.A. Selection of powder or wire feedstock material for the laser cladding of inconel® 625. Journal of Materials Processing Technology, 231:357– 365, 2016.
[16] Laser cladding. https://www.fst.nl/thermal-sprayequipment/modular-thermal- spray-systems/lasercladding-systems/laser-cladding.html.
[17] Abioye, T.E., McCartney, D.G., and Clare, A.T. Laser cladding of inconel 625 wire for corrosion protection. Journal of Materials Processing Technology, 217:232–240, 2015.
[18] Lugscheider, E., Bolender, H., and Krappitz, H. Laser cladding of paste bound hardfacing alloys. Surface Engineering, 7(4):341–344, 1991.
[19] Abioye, T. E., Farayibi, P. K., and Clare, A. T. A comparative study of inconel 625 laser cladding by wire and powder feedstock. Materials and Manufacturing Processes, 32(14):1653–1659, 2017.
[20] Borges, B., Quintino, L., Miranda, Rosa M., and Carr, Phil. Imperfections in laser clading with powder and wire fillers. The International Journal of Advanced Manufacturing Technology, 50(1):175–183, Sep 2010.
[21] Steen, William M and Mazumder, Jyotirmoy. Laser material processing. springer science & business media, 2010.
[22] Kai-ming, Wang, Han-guang, Fu, Yu-long, Li, Yongping, Lei, Shi-zhong, Wei, and Zhen-qing, Su. Effect of power on microstructure and properties of laser cladding nicrbsi composite coating. Transactions of the IMF, 95(6):328–336, 2017.
[23] Telasang, G., Dutta Majumdar, J., Padmanabham, G., Tak, M., and Manna, I. Effect of laser parameters on microstructure and hardness of laser clad and tempered aisi h13 tool steel. Surface and Coatings Technology, 258:1108–1118, 2014.
[24] Masanta, Manoj, Shariff, S.M., and Roy Choudhury, A. Evaluation of modulus of elasticity, nano-hardness and fracture toughness of tib2–tic– al2o3 composite coating developed by shs and laser cladding. Materials Science and Engineering: A, 528(16):5327–5335, 2011.
[25] Riquelme, Ainhoa, Rodrigo, Pilar, EscaleraRodríguez, María Dolores, and Rams, Joaquín. Analysis and optimization of process parameters in al–sicp laser cladding. Optics and Lasers in Engineering, 78:165–173, 2016.
[26] Liu, Jianli, Yu, Huijun, Chen, Chuanzhong, Weng, Fei, and Dai, Jingjie. Research and development status of laser cladding on magnesium alloys: A review. Optics and Lasers in Engineering, 93:195– 210, 2017.
[27] Barnes, S, Timms, N, Bryden, B, and Pashby, I. High power diode laser cladding. Journal of materials processing technology, 138(1-3):411–416, 2003.
[28] Zhong, Chongliang, Biermann, Tim, Gasser, Andres, and Poprawe, Reinhart. Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. Journal of Laser Applications, 27(4):042003, 2015.
[29] Graf, Benjamin, Ammer, Stefan, Gumenyuk, Andrey, and Rethmeier, Michael. Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Procedia CIRP, 11:245–248, 2013. 2nd International Through-life Engineering Services Conference.
[30] Ruiz, Jose Exequiel, Cortina, Magdalena, Arrizubieta, Jon Iñaki, and Lamikiz, Aitzol. Study of the influence of shielding gases on laser metal deposition of inconel 718 superalloy. Materials (Basel, Switzerland), 11(8):1388, Aug 2018. 30096886[pmid].
[31] Arrizubieta, J.I., Tabernero, I., Ruiz, J. Exequiel, Lamikiz, A., Martinez, S., and Ukar, E. Continuous coaxial nozzle design for lmd based on numerical simulation. Physics Procedia, 56:429–438, 2014. 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014.
[32] Elmer, JW, Vaja, J, Carlton, HD, and Pong, R. The effect of ar and n2 shielding gas on laser weld porosity in steel, stainless steels, and nickel. Weld J, 94(10):313s–325s, 2015.
[33] Oliari, Stella Holzbach, D’Oliveira, Ana Sofia Clímaco Monteiro, and Schulz, Martin. Additive manufacturing of h11 with wire-based laser metal deposition. Soldagem & Inspeção, 22(4):466–479, 2017.
[34] Lian, Guofu, Yao, Mingpu, Zhang, Yang, and Chen, Changrong. Analysis and prediction on geometric characteristics of multi-track overlapping laser cladding. The International Journal of Advanced Manufacturing Technology, 97(5):2397–2407, Jul 2018.
[35] Li, Yanxiang and Ma, Jian. Study on overlapping in the laser cladding process. Surface and Coatings Technology, 90(1):1–5, 1997.
[36] Rashid, RA Rahman, Barr, CJ, Palanisamy, S, Nazari, KA, Orchowski, N, Matthews, N, and Dargusch, MS. Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300 m steel. Surface and Coatings Technology, 380:125090, 2019.
[37] Zhou, Shengfeng, Huang, Yongjun, and Zeng, Xiaoyan. A study of ni-based wc composite coatings by laser induction hybrid rapid cladding with elliptical spot. Applied Surface Science, 254(10):3110–3119, 2008.
[38] Roy, Taposh, Lai, Quan, Abrahams, Ralph, Mutton, Peter, Paradowska, Anna, Soodi, Mehdi, and Yan, Wenyi. Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails. Wear, 412-413:69–81, 2018.
[39] Durge, Gaurav, Chandak, Aayush, Jaiswal, Abhimanyu Kumar, Kiran, K Uday Venkat, Sunil, B Ratna, and Dumpala, Ravikumar. Effect of heat treatment on the hardness and wear characteristics of NiCrBSi laser clad deposited on AISI410 stainless steel. Materials Research Express, 6(8):086524, may 2019.
[40] Li, G.J., Li, J., and Luo, X. Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate. Optics & Laser Technology, 65:66–75, 2015.