بررسی مدل تحلیلی لوک و پیکوتووسکی برای پیش‌بینی عملکرد پرتابه میله بلند فرسایشی در اهداف فلزی

نوع مقاله : علمی ترویجی

نویسندگان

گروه مهندسی مکانیک، دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

مدل‌سازی و تحلیل مسأله ضربه و نفوذ پرتابه‌ها در اهداف و آثار ناشی از آن نیز از جمله موضوعات کاربردی است که از کاربردهای مهم می‌توان به طراحی پانل ضدگلوله و تجهیزات نظامی، ساخت سازه‌های مقاوم در برابر ضربه و نفوذ، طراحی پرتابه‌ها با قدرت نفوذ مناسب و کارآیی بالا اشاره کرد. در این مقاله از مدل تحلیلی برای پیش‌بینی عملکرد پرتابه میله بلند فرسایشی استفاده شده که با سرعت 2km/s
بصورت نرمال در اهداف فلزی نفوذ کرده و این مدل قطر حفره، عمق نفوذ و سرعت نفوذ را به عنوان توابع سرعت پرتابه پیش‌بینی می‌کند. آزمون عکس‌های اشعه ایکس نشان می‌دهد که نوک پرتابه پس از نفوذ در هدف به شکل قارچی درآمده و تقریباً شکل سر نیم‌کروی خود را در تمام مراحل اولیه شبه‌ثابت نفوذ حفظ کرده است. برای ارزیابی بالستیک نهایی، پرتابه فولادی و تنگستنی در هدف آلومینیومی با سرعت بین 2km/s تا 3.1km/s نفوذ کرده و در ادامه از نتایج تحلیل انبساط حفره کروی بر روی پرتابه‌های غیر تغییر‌شکل‌پذیر استفاده شده تا مقاومت هدف را در برابر نفوذ پرتابه‌های فرسایشی بتوان محاسبه کرد. مدل تحلیلی ارائه‌شده با توجه به فرضیات حاکم بر آن، توافق کاملاً مناسبی با مقادیر تجربی مختلف دارد.

کلیدواژه‌ها

موضوعات


[1] Moslemi Petrudi, A, Vahedi, Kh, Kamyab, MH, and Petrudi, Moslemi. Numerical and experimental study of oblique penetration of a blunt projectile into ceramicaluminum target. Modares Mechanical Engineering, 19(5):1253–1263, 2019.
[2] Anderson Jr, Charles E and Bodner, Sol R. Ballistic impact: the status of analytical and numerical modeling. International Journal of Impact Engineering, 7(1):9–35, 1988.
[3] Alekseevskii, VP. Penetration of a rod into a target at high velocity. Combustion, explosion and shock waves, 2(2):63– 66, 1966.
[4] Tate, A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids, 15(6):387–399, 1967.
[5] Tate, A. Further results in the theory of long rod penetrations. Journal of the Mechanics and Physics of Solids, 17(3):141–150, 1969.
[6] Pack, DC and Evans, WM. Penetration by high-velocity (munroe) jets: I. Proceedings of the Physical Society. Section B, 64(4):298, 1951.
[7] Hohler, V and Stilp, AJ. Study of the penetration behavior of rods for a wide range of target densities. in Proceedings of the 5th International Symposium on Ballistics. Toulouse, France, pp. 16–18, 1980.
[8] Hohler, V and Stilp, AJ. Hypervelocity impact of rod projectiles with l/d from 1 to 32. International Journal of Impact Engineering, 5(1-4):323–331, 1987.
[9] Forrestal, MJ, Piekutowski, AJ, and Luk, VK. Long-rod penetration into simulated geological targets at an impact velocity of 3. 0 km/s. tech. rep., Sandia National Labs., Albuquerque, NM (USA), 1988.
[10] Tate, A. Long rod penetration models—part i. a flow field model for high speed long rod penetration. International Journal of mechanical sciences, 28(8):535–548, 1986.
[11] Tate, A. Long rod penetration models—part ii. extensions to the hydrodynamic theory of penetration. International Journal of mechanical sciences, 28(9):599–612, 1986.
[12] Taylor, Geoffrey Ingram. The use of flat-ended projectiles for determining dynamic yield stress i. theoretical considerations. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 194(1038):289– 299, 1948.
[13] Hawkyard, JB. A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations. International Journal of Mechanical Sciences, 11(3):313–333, 1969.
[14] Luk, VK, Forrestal, MJ, and Amos, DE. Dynamic spherical cavity expansion of strain-hardening materials. 1991.
[15] Forrestal, MJ, Brar, NS, and Luk, VK. Penetration of strain-hardening targets with rigid spherical-nose rods. 1991.
[16] Eichelberger, RJ and Gehring, JW. Effects of meteoroid impacts on space vehicles. ARS Journal, 32(10):1583–1591, 1962.
[17] Perez, E. Experimental and theoretical study on the penetration of semi-infinite metal targets by very long metal projectiles of velocity greater than 2000 m/s. Sci. Tech. Armement, 56(219):11–155, 1982.
[18] Kawahara, Wendall A. Compression materials testing at low to medium strain rates. tech. rep., American Society of Mechanical Engineers, New York, NY, 1987.
[19] Matuska, Daniel A and Osborn, John J. Dynamics of high velocity penetration. Air Force Armament Laboratory, Air Force Systems Command, 1981.
[20] Duvall, George Evered. Some properties and applications of shock waves. Stanford Research Institute, 1960.
[21] Ekbom, L, Bogegard, S, Holmberg, L, and Westerling, L. Comparison of the mechanical properties of ke penetrator tungsten alloys and their ballistic performance. jaemfoerelse mellan ke-projektilmaterialets mekanisks egenskaper och projektilens ballistiska verkan. 1987.
[22] Wright, Thomas W and Frank, Konrad. Approaches to penetration problems. tech. rep., ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD, 1988.
[23] Shampine, Lawrence F and Watts, HA. Depac-design of a user oriented package of ode solvers. tech. rep., Sandia National Labs., Albuquerque, NM (USA), 1980.
[24] Hohler, V and Stilp, AJ. Penetration of steel and high density rods in semi-infinite steel targets. in Proc. 3rd Int. Symp. Ballistics, 1977.
[25] Silsby, Graham F. Penetration of semi-infinite steel targets by tungsten long rods at 1.3 to 4.5 km/s. in Proc. 8th Int. Symp. on Ballistics, pp. TB–31, 1984.
[26] Naz, P. Penetration and perforation of a steel target by copper rods—measurement of crater diameter. in Proceedings of the 11th international symposium on ballistics, Brussels, Belgium, pp. 233–242, 1989.
[27] Piekutowski, AJ. The university of dayton research institute 50/20 mm, two stage, light-gas gun. in Proceedings of the Aeroballistic Range Association. Southwest Research Institute San Antonio, Texas, 1985.
[28] Ravid, M, Bodner, SR, and Holcman, I. Analysis of very high speed impact. International journal of engineering science, 25(4):473–482, 1987.
[29] Petrudi, Amin Moslemi, Vahedi, Khodadad, Rahmani, Masoud, and Petrudi, MohammadAli Moslemi. Numerical and analytical simulation of ballistic projectile penetration due to high velocity impact on ceramic target. Frattura ed Integrità Strutturale, 14(54):226–248, 2020.
[30] Rahmani, Masoud, Oskouei, Alireza Naddaf, and Petrudi, Amin Moslemi. Experimental and numerical study of the blast wave decrease using sandwich panel by granular materials core. Defence Technology, 2020.
[31] Rahmani, Masoud and Petrudi, Amin Moslemi. Optimization and experimental investigation of the ability of new material from aluminum casting on pumice particles to reduce shock wave. Periodica Polytechnica Mechanical Engineering, 64(3):224–232, 2020.
[32] Fathi, Pourya, Oskouei, Alireza Naddaf, Vahedi, Khodadad, and Petrudi, Amin Moslemi. Numerical and experimental analysis of stacking sequences effects in composite mechanical joints under impact loadings. Frattura ed Integrità Strutturale, 14(53):457–473, 2020.