بررسی زاویة خمش در فرایند شکل‌دهی به‌کمک لیزر با استفاده از هوش مصنوعی

نوع مقاله : علمی ترویجی

نویسندگان

1 کارشناسی ارشد مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد نجف‌آباد

2 استادیار گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد نجف‌آباد

3 استاد گروه مهندسی مکانیک، دانشگاه صنعتی اصفهان

چکیده

شکل‌دهی توسط لیزر از جمله روش‌های مدرن شکل‌دهی است که در اثر تنش‌های حرارتی ایجادشده توسط لیزر، تغییرشکل در ورق ایجاد می‌شود. از جمله مزایای این روش می‌توان به عدم نیاز به نیروی خارجی، افزایش انعطاف‌پذیری فرایند، عدم نیاز به ابزار جانبی و در نتیجه کاهش هزینه و افزایش دقت اشاره کرد. از طرفی فرایند شکل‌دهی با لیزر نیازمند هزینه‌های محاسباتی و تجهیزاتی بالاست. جهت کاهش هزینة محاسبات و پیش‌بینی زاویة خمش ایجادشده می‌توان از روش‌های مبتنی بر هوش مصنوعی استفاده کرد. در این مقاله سعی شده است تا با استفاده از روش شبکة عصبی مصنوعی، مدل مناسبی جهت پیش‌بینی زاویة خم ارائه نمود. به‌منظور آموزش شبکه از الگوریتم پس انتشار خطا استفاده شده است. داده‌های مورد نیاز برای آموزش شبکه با استفاده از تحلیل المان محدود استخراج شده که به‌کمک نتایج تحلیلی یانگ جون چی اعتبارسنجی شده است. مقایسة نتایج شبکة عصبی مصنوعی با نتایج روش‌های تحلیلی و عددی، صحت جواب‌های پیش‌بینی شده توسط شبکة عصبی مصنوعی و همچنین قدرت بالای این روش را نشان می‌دهد.

کلیدواژه‌ها


[1] Chen, D. J., S. C. Wu, M. Q. Li. “Studies on Laser Forming of Ti–6Al–4V Alloy Sheet.” Journal of Materials Processing Technology 152 (2004): 62–65.
[2] Dearden, G., S. P. Edwardson. “Pure and Applied Optics 5.” Journal of Optics And Laser (2003):S8–S15.
[3] Hong, Sh., F. Vollertsen. “Modelling of laser forming – An review.” Computational Materials Science 46 (2009):834–40.
[4] Masubuchi, K. “Applications of laser technologies to metal fabrication.” Paper presented at the international conference on Laser Advanced Materials Processing, Nagaoka, Japan, 1992.
[5] Scully, K., “Laser line heating.”  Joumal of Ship Production 3,4 (1987): 237 –46.
[6]. Magee, J., “Laser Forming of Aerospace Alloys.” Ph.D. diss., University of Liverpool, 1999.
[7] Marya, M., G. R. Edwards. "A study on the laser forming of near-alpha and metastable

beta titanium alloy sheets.” Journal of Materials Processing Technology 108 (2001): 376-83.
[8] Cheng, P. J., S. C. Lin. "Using neural networks to predict bending angle of sheet metal formed by laser." International Journal of Machine Tools & Manufacture 40 (2000): 1185-97.
[9] Zemin, F., M. Jianhua, L. Chen, W. Chen. “Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal.”  Materials and Design 31 (2010): 267–77.
[10] Basem Yousef, F., G. K. Knopf, E. V. Bordatchev, S. K. Nikumb. “Neural network modeling and analysis of the material removal process during laser machining”, International Journal of Advanced Manufacturing Technology 22 (2003): 41–53.
[11] Yongjun, Sh., H. Shen, Zh. Yao, J. Hu. “Temperature gradient mechanism in laser forming of thin plates.” Optics & Laser Technology 39 (2007): 858–63.
[12] Yongjun, Sh., Zh. Yao, H. Shen, J. Hu. “Research on the mechanisms of laser forming for the metal plate.” International Journal of Machine Tool & Manufacture 46  (2006): 1689-97.
[13] Dashtbayazi, M. R., A. Shokuhfar, A. Simchi. “Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders.” Materials Science and Engineering A 466 (2007): 274–83.
[14 Canakci, A., S. Ozsahin, T. Varol. “Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks.” Powder Technology 228 (2012): 26–35.
[15] Kittel, St., R. Kopp. “FEM-simulation der Blechumformung mittels induktiver ErwaÈrmung.” BaÈnder Bleche Rohre 10 (1990): 129-33.
[16] Vollertsen, F., M. Geiger, W. M. Li. “FDM- and FEM-simulation of laser forming: a comparative study, in: Z.R. Wang, Y. He (Eds.).” Advanced Technology of Plasticity (1993): 1793-98.
[17] Kopp, R., S. Kittel, Ch. Scholl. “Simulation des Laserstrahlumformens von Stahlblechen.” BaÈnder Bleche Rohre 10 (1994): 34-38.
[18] Kermanidis, Th. B., An. K. Kyrsanidi, Sp. G. Pantelakis. “Numerical simulation of the laser forming process in metalic plates.” Paper presented at the third international conference on Surface Treatment, Oxford, UK, July 15-17, 1997.
[19] Kyrsanidi, An. K., Th. B. Kermanidis, Sp. G. Pantelakis. “Numerical and experimental investigation of the laser forming process.” Journal of Materials Processing Technology 87 (1999): 281-90.
[20] Kim, H. Y., J. H. Ahn. “Chip disposal state monitoring in drilling using neural network based spindle motor power sensing.” International Journal of Machine Tools & Manufacture 42 (2002): 1113-19.
[21] Jain, R. K., V. K. Jain. “Optimum selection of machining conditions in abrasive flow machining using neural network.” Journal of Materials Processing Technology 108 (2000): 62-67.
[22] Vrabel, M., I. Mankova, J. Beno,  J. Tuharsky. “Surface roughness prediction using artificial neural networks when drilling Udimet 720.”Procedia Engineering 48  ( 2012 ): 693 – 700.
[23] Hayajneh, Mohammed T., Adel M. Hassan, Ahmad T. Mayyas. “Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique.” Journal of Alloys and Compounds 478 (2009): 559–65.
[24] Bagheripoor, Mahdi, Hosein Bisadi. “Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process.”  Applied Mathematical Modelling 37 (2013): 4593–07.
[25] Downes, A., P. Hartley. “Using an artificial neural network to assist roll design in cold roll-forming processes.” Journal of Materials Processing Technology 177 (2006): 319–22.
[26].Papazoglou V., “Analytical techniques for determining temperatures thermal strains and residual stresses during welding.” PhD diss., Massachusetts Institute of Technology, 1981.