بررسی توزیع دما درون سر انسان و هوای اطراف

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشیـار گروه مهندسی شیمی، دانشکدة مهندسی، دانشگاه فردوسی مشهد

2 دانشجوی دکتری مهندسی شیمی، دانشکدة مهندسـی، دانشگاه فردوسـی مشهد

چکیده

از جمله مدل‌های شناخته‌شده برای بررسی انتقال حرارت درون سر انسان معادلة پنس[i] است. در این معادله، تولید حرارت در بافت زنده، ناشی از دو منبع خونرسانی و سوخت‌وساز می‌باشد. با بالارفتن دمای بافت‌های سطحی، یک سازوکار انتقال حرارت جابه‌جایی آزاد در اطراف سر شکل می‌گیرد. در این مقاله، مطالعات انجام‌شده روی توزیع دما درون سر و هوای اطراف آن، همچنین پروفایل‌های توزیع بردار سرعت در هوای اطراف سر تجزیه و تحلیل شده است. همچنین مدلی دوبعدی از سر انسان در محیط نرم‌افزار گمبیت[ii]، ویرایش 6، شبیه‌سازی شده و با استفاده از روش حجم محدود و نرم‌افزار فلوئنت[iii]، ویرایش 6، توزیع دما دراطراف سر (در حالت ناپایدار) بررسی شده است.



[i]. Pennes


[ii]. Gambit


[iii]. Fluent

کلیدواژه‌ها


[1] Van Leeuwen, G. M. J.,  Hand, J. W., Lagendijk, J. J. W., Azzopardi, D. V. and Edwards, A. D., "Numerical Modeling of Temperature Distributions within the Neonatal Head", Pediatric Research, Vol. 48, No. 3, pp. 351-356, 2000.
[2] Dennis, B. H., Eberhart, R. C., Dulikravich, G. S. and Radons, S. W., "Finite Element Simulation of Cooling of Realistic 3-D Human Head and Neck", J. Biomech. Eng., Vol. 125, pp. 832-840, 2003.
[3] Xu, X., Tikuisis, P. and Giesbrecht, G., "A Mathematical Model for Human Brain Cooling During Cold-Water Near Drowning", J.Applied Physiol., Vol. 86, pp.  265 -272, 1999.
[4] Sukstanskii, A. L. and Yablonskiy, D. A., "An Analytical Model of Temperature Regulation in Human Head", Journal of Thermal Biology, Vol. 29, pp. 583- 587, 2004.
[5] Clark, R. P., and Toy, N., "Natural Convection around the Human Head", J. Phisiol., vol. 244, pp. 283-293, 1975.
[6] Pennes, H. H., "Analysis of Tissue and Arterial Blood Temperatures in the Resting Forearm", J.Appl. Physiol., vol. 1, pp. 93-122, 1948.
[7] Incropera, F. and DeWitt, D., Fundamentals ofHeat and Mass Transfer, 5th ed., John Wiley & Sons, 2002.
[8] Hiroshi, F., Masami, F., Hiroyasu, K., Hirochika, I., Sadahiro, N., Takashi, S., Takeshi, Y. and Michiyasu, S., "An implantable, focal brain cooling device suppresses nociceptive pain in rats”, Neuroscience Research, Vol. 66, pp. 402 -405, 2010.
[9] Wusi, Q.; Hong, S.; Ying, Z.; Weimin, W.; Weiguo, L.; Qizhou, J.; Ming, L.; and Merriem, M.; "Noninvasive selective brain cooling by head and neck cooling is protective in severe traumatic brain injury", Journal of Clinical Neuroscience, Vol. 13, pp.  995 – 1000, 2006.
[10] Na'ama, A. S.; Nikolaos, G.; Michal, H.; Gali, U.; Alexander, G. A.; Constantina, S.; Savvas, G.; Olga, T.; and Esther, S.;  "Microglial involvement in neuroprotection following experimental traumatic brain injury in heat acclimated mice", BRAIN RESEARCH, Vol. 1244, pp. 132 – 141, 2008.
[11] Irnédu, P.; Duncan, M.; Carola, N.; and Helen, P. L.; "c-Fos immunoreactivity in selected brain regions of rats after heat exposure and pyrogen administration", BRAIN RESEARCH, Vol. 1120, pp. 124- 130, 2006.
[12] Manuel, B.; Joshua, W. L.; Joseph, M. K.; Denise, B.; and Lance, B. B.; "Feasibility of intra-arrest hypothermia induction: A novel nasopharyngeal approach achieves preferential brain cooling", Resuscitation, Vol. 81, pp. 1025–1030, 2010.
[13] Adams, R.; and Koster, R.W.;"Burning issues: Early cooling of the brain after resuscitation using burn dressings, A proof of concept observation", Resuscitation, Vol. 78, pp. 146 – 150, 2008.
[14] Gholam, K. M.; Patricia, S.; Eric, L. S.; Ronald, P. L.; William, R. S. W.; Pavel, I. O.; Stefano, V.; and Michael, A. R.; "Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models", Epilepsy Research, Vol. 70, pp. 200–210, 2006.
[15] Wolfgang, W.; Danica, K.;  Fritz, S.; Wolfgang, S.; Sandra, H.; Andreas, J.; Michael, H.;  Udo, M. L.; and Wilhelm, B.; "Outcome after resuscitation using controlled rapid extracorporeal cooling to a brain temperature of 30 ˚C, 24 ˚C and 18 ˚C during cardiac arrest in pigs", Resuscitation, Vol. 81, pp. 242–247, 2010.
[16] Yoshimasa, K.; Jun, K.; Atsuki, K.; Shigenao, M.; and Masato, F.; "Computer simulation for postmortem cooling processes in the outer ear", Legal Medicine, Vol. 9, pp. 55–62, 2007.
[17] Ivan, O.; Fon-Chieh, C.; and Nachappa, G.; "Seizure control with thermal energy? Modeling of heat diffusivity in brain tissue and computer-based design of a prototype mini-cooler", Epilepsy & Behavior, Vol. 16, pp. 203–211, 2009.
[18] Bert, C.; Yury, S.; and Friedemann, P.; "Heating up or cooling up the brain? MEG evidence that phrasal verbs are lexical units", Brain & Language, Vol. 115, pp. 189–201, 2010.
[19] Kullervo, H.; Nathan, M. D.; Greg, C.; Ferenc, A. J.; Eyal, Z.; Ron, K.; Tara, M.; and Douglas, R.;  "Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-A primate study", European Journal of Radiology, Vol. 59, pp. 149–156, 2006.
 [20] Han-Chung, L.; Hao-Che, C.; Der-Yang, C.; Kuang-Fu, C.; Pao-Hsuan, L.; and Chun-Chung, C.; "Applying Cerebral Hypothermia and Brain Oxygen Monitoring in Treating Severe Traumatic Brain Injury", World Neurosurg, Vol. 74, No. 6, pp. 654-660, 2010.
[21] Darren, L. C.; Mark, P.; Shannon, W.; Ian, O. J.; and Frederick, C.; "Treatments (12 and 48 h) with systemic and brain-selective hypothermia techniques after permanent focal cerebral ischemia in rat", Experimental Neurology, Vol. 220, pp. 391–399, 2009.
[22] On, F.;  Yukiko, K.; Aya, F.; Hirotsugu, F.; Ekaterine, T.; Shusaku, H.; Mihyon, S.;  Takeshi, K.;  Takayoshi, H.; Koichiro, S.;  and Yuji, M.;  "Post-ischemic hypothermia reduced IL-18 expression and suppressed microglial activation in the immature brain", BRAIN RESEARCH, Vol. 1121, pp. 35-45, 2006.
[23] Ellen, G.; Matthias, P.; Georg, B.; and Herbert, B.; "Autopsy at 2 months after death: Brain is satisfactorily preserved for neuropathology", Forensic Science International, Vol. 168, pp. 177-182, 2007.
[24] Kickhefel, A.; Roland, J.; Weiss, C.; and Schick, F.; "Accuracy of real-time MR temperature mapping in the brain: A comparison of fast sequences", Physica Medica, Vol. 26, pp. 192-201, 2010.
[25] Kou-Chi, N.; Mao-Tsun, L.; and Ching-Ping, C.; "Hyperbaric oxygen improves survival in heatstroke rats by reducing multiorgan dysfunction and brain oxidative stress", European Journal of Pharmacology, Vol. 569, pp. 94-102, 2007.
[26] Mehrdad, N.; and Reza, M. F.; "Estimation of cranial capacity and brain weight in 18–22-year-old Iranian adults", Clinical Neurology and Neurosurgery, Vol. 110, pp. 997–1002, 2008.
[27] Ching-Ping, C.; Wu-Tein, H.; Bor-Chih, C.; Chuan-Chih, H.; and Mao-Tsun, L.; "The flavonoid baicalin protects against cerebrovascular dysfunction and brain inflammation in experimental heatstroke", Neuropharmacology, Vol. 52, pp. 1024-1033, 2007.
[28] Jinn-Rung, K.; Chong-Jeh, L.; Chung-Ching, C.; Ching-Ping, C.; and Mao-Tsun, L.; "Resuscitation from experimental traumatic brain injury by agmatine therapy", Resuscitation, Vol. 75, pp. 506-514, 2007.
[29] Wölfer, J.; Speckmann, E. J.; Wassmann, H.; Gorji, A.; and Greiner, C.; "Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices", Journal of Neuroscience Methods, Vol. 193, pp. 77–81, 2010.
[30] Nouls, J. C.; Izenson, M. G.; Greeley, H. P.; and Johnson, G. A.; "Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain", Journal of Magnetic Resonance, Vol. 191, pp.  231-238, 2008.
[31] Manuella, S. L. R.; Jason, S.; Patrick, M. K.; John, M.; Samuel, A. T.; and Tomas, D.; "Blood–brain barrier integrity in a rat model of emergency preservation and resuscitation", Resuscitation, Vol. 80, pp. 484-488, 2009.