مقایسه خواص مکانیکی آلیاژ آلومینیم 2024 پس از عملیات حرارتی رسوب‌سختی یک و دومرحله‌ای

نوع مقاله : علمی ترویجی

نویسنده

کارشناس ارشد مهندسی متالورژی، دانشگاه پیام نور، تهران

چکیده

در این مقاله اثر عملیات پیرسازی دومرحله‌ای بر خواص مکانیکی (استحکام کششی، استحکام تسلیم، درصد ازدیاد طول نسبی و سختی) بررسی و نتایج حاصل از پیرسازی دومرحله‌ای با نتایج حاصل از پیرسازی مصنوعی یک‌مرحله‌ای و پیرسازی طبیعی در زمان‌ها و دماهای مختلف مقایسه شده است. پس از انجام عملیات انحلال در دمای 520 درجة سانتی‌گراد به‌مدت دو ساعت و تندسرمایش آلیاژ آلومینیم 2024 در دمای محیط، عملیات پیرسازی طبیعی و مصنوعی یک و دومرحله‌ای انجام و خواص مکانیکی و سختی در زمان‌های مختلف پیرسازی اندازه‌گیری می‌شود. نتایج نشان می‌دهد که با افزایش زمان پیرسازی، سختی و استحکام افزایش و درصد ازدیاد طول نسبی کاهش می‌یابد. البته میزان افزایش سختی و استحکام در نمونه‌هایی که در دو مرحله پیرسخت شده‌اند بیش از نمونه‌هایی است که در یک مرحله پیرسخت شده‌اند. همچنین در اثر اعمال درصد معینی کارسرد، قبل از عملیات پیرسازی، سختی از مقادیر بیشتری نسبت به نمونة بدون اعمال کارسرد برخوردار می‌باشد.

کلیدواژه‌ها


[1] Roósz, A., and H. E. Exner. "Ternary restricted-equilibrium phase diagrams-II. Practical application: Aluminium-rich corner of the Al Cu Mg system." Acta Metallurgica et Materialia 38, no. 10 (1990): 2009-2016.
[2] Neuhäuser, Hartmut, and Christoph Schwink. "Solid Solution Strengthening." Materials Science and Technology (2006).
[3] Polmear, Ian, and David St John. Light alloys: from traditional alloys to nanocrystals. Butterworth-Heinemann, 2005.
[4] Beffort, O., C. Solenthaler, and M. O. Speidel. "Improvement of strength and fracture toughness of a spray-deposited Al Cu Mg Ag Mn Ti Zr alloy by optimized heat treatments and thermomechanical treatments." Materials Science and Engineering: A 191, no. 1 (1995): 113-120.
[5] Nakai, Manabu, and Takehiko Eto. "New aspect of development of high strength aluminum alloys for aerospace applications." Materials Science and Engineering: A 285, no. 1 (2000): 62-68.
[6] Engdahl, T., V. Hansen, P. J. Warren, and K. Stiller. "Investigation of fine scale precipitates in Al–Zn–Mg alloys after various heat treatments." Materials Science and Engineering: A 327, no. 1 (2002): 59-64.
[7] Hernández-Rivera, J. L., JJ Cruz Rivera, C. T. Koch, V. B. Özdöl, and R. Martínez-Sánchez. "Study of coherence strain of GP II zones in an aged aluminum composite." Journal of Alloys and Compounds 536 (2012): S159-S164.
[8] Reis, Danieli AP, Antonio Augusto Couto, N. I. Domingues Jr, Ana Cláudia Hirschmann, S. Zepka, and Carlos de Moura Neto. "Effect of artificial aging on the mechanical properties of an aerospace aluminum alloy 2024." In Defect and Diffusion Forum, vol. 326, pp. 193-198. Trans Tech Publications, 2012.
[9] Huda, Zainul, Nur Iskandar Taib, and Tuan Zaharinie. "Characterization of 2024-T3: an aerospace aluminum alloy." Materials Chemistry and Physics 113, no. 2 (2009): 515-517.
[10] Abbass, Muna Khethier. "Effect of aging time on the mechanical properties of friction stir spot welding of Al-alloy (AA2024)." Int. J. Eng. Res. Appl 2 (2012): 1366-1374.
[11] Wang, S. C., and M. J. Starink. "Two types of S phase precipitates in Al–Cu–Mg alloys." Acta Materialia 55, no. 3 (2007): 933-941.
[12] Wang, S. C., M. J. Starink, and N. Gao, “Precipitation hardening in Al–Cu– Mg alloys”, Scr. Mater., 54, (2006): 287-291.
[13] Feng, Zongqiang, Yanqing Yang, Bin Huang, Ming Han, Xian Luo, and Jigang Ru. "Precipitation process along dislocations in Al–Cu–Mg alloy during artificial aging." Materials Science and Engineering: A 528, no. 2 (2010): 706-714.
[14] Wang, S. C., and M. J. Starink. "Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys." International Materials Reviews (2013).
[15] Afzal, Naveed, Tariq Shah, and R. Ahmad. "Microstructural Features and Mechanical Properties of Artificially Aged AA2024." Strength of Materials 45, no. 6 (2013): 684-692.
[16] Alexopoulos, Nikolaos D., Aggeliki Proiou, Theano Examilioti, Nikolai Kashaev, Stefan Riekehr, and Stavros K. Kourkoulis. "Effect of artificial aging on the mechanical performance of (Al-Cu) 2024 and (Al-Cu-Li) 2198 aluminum alloys." Procedia Structural Integrity 2 (2016): 3782-3783.