موتورهای پیشرفته با احتراق دما پایین چشم‌انداز تحقیقات آینده

نوع مقاله : علمی ترویجی

نویسندگان

1 استادیار دانشکدة مهندسی خودرو دانشگاه علم و صنعت ایران

2 دانشجوی دکتری دانشکدة مهندسی خودرو دانشگاه علم و صنعت ایران

چکیده

موتور احتراق داخلی به‌عنوان وسیله‌ای برای تبدیل انرژی، اداوتی بسیار باارزش‌اند. امروزه توانایی موتور احتراق داخلی در تولید قدرت ماندگار و مطمئن از لحاظ اقتصادی برای کاربردهای ثابت و متحرک منجر به تولید انبوه آنها در طرح‌های متنوع شده است. در این مقاله، مزایا و معیاب موتورهای احتراق داخلی در مقایسه با سایر دستگاه‌های تولید توان مطرح می‌شود. سپس فرصت‌ها و تهدیدها در زمینة تحقیقات تجربی و عددی انواع موتورهای احتراق داخلی به‌اجمال بررسی می‌گردد. در این رهگذر، موتورهایی با احتراق پیشرفتة دماپایین به‌طور مفصل مورد بررسی قرار می‌گیرند. با استفاده از نتایج به‌دست آمده می‌توان گفت که استفاده از مفاهیم پیشرفتة احتراقی در آینده به‌منظور افزایش بازده و کاهش آلایندگی ضروری است. در نهایت می‌توان عنوان کرد که استفاده از راهبرد اشتعال تراکمی کنترل واکنشی در موتور احتراق داخلی که انعطاف‌پذیری استفاده از سوخت‌های متنوع را فراهم می‌کند، سبب افزایش بازده و کاهش آلایندگی موتور خواهد شد.

کلیدواژه‌ها


[1] Total Cars Produced in the World, http://www.statisticbrain.com/cars-produced-in-the-world/ (accessed Jan 14, 2014)
[2] Energy Technology Perspectives, International Energy Agency, Paris, 2012, http://www.iea.org/publications/freepublications/publication/name,31269,en.html (accessed Jan 12, 2014)
[3] Rahman, Z., Butler, K., and Ehsani, M., "A Study of Design Issues on Electrically Peaking Hybrid Electric Vehicle for Diverse Urban Driving Patterns," SAE Technical Paper 1999-01-1151, 1999, 1151.
[4] Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
[5] Merker, G.P., Schwarz, Ch., Teichmann, R., Combustion Engine Development: Mixture Formation, Combustion, Emissions and Simulation, Springer, 2012.
[6] Shi, Y., H.W.Ge, R.D. Reitz, Computational Optimization of InternalCombustion Engines, Springer, 2011.
[7] Kokjohn, S.L., Splitter, D.A., Hanson, R.M., and Reitz, R.D., “Experiments and Modeling of Dual Fuel HCCI and PCCI Combustion using in-Cylinder Fuel Blending.” SAE International Journal of Engines, 2(2): 24-39, 2010, 2647.
[8] Lakshminarayanan, P.A., Yoghesh, V. Aghav. Modeling Diesel Combustion, Springer, 2010.
[9] The OpenFoam user’s guide, Copyright 2011-2013 OpenFOAM Foundation, Septemebr 2013.
[10] Reitz, R. D. Directions in Internal Combustion Engine Research.Combustion and Flame, 2013, 160:1–8.
[11] Stone, R. Introduction to Internal Combustion Engines, Third Edition, SAE, 1999.
[12] Dec., J.E., “A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE Technical Paper, 1997.
[13] Kokjohn, S.L., R.D. Reitz. Investigation of the Roles of Flame Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional and Low Temperature Diesel Combustion. ASME J. Eng. Gas Turbines Power, 133(10), 2011, 1-10.
[14] Zhao, H., HCCI and CAI Engines for the Automotive Industry, Woodhead Publishing Ltd., ISBN-10: 2007.
[15] Ma, Sh., Zheng, Z., Liu, H., Zhang, Q., Yao, M, “Experimental Investigation of the Effects of Diesel Injection Strategy on Gasoline/Diesel Dual-Fuel Combustion,” Applied Energy 2013; 109:202–212.
[16] Neely, G.D., Sasaki, S., Huang, Y., Leet, J.A., and Stewart, D.W. “New Diesel Emission Control Strategy to Meet US Tier2 Emissions Regulations,” SAE Technical Paper 2005-01-1091, 2005.
[17] Kokjohn, S.L. “Reactivity controlled compression ignition combustion.” PhD Thesis, University of Wisconsin-Madison, 2012.
[18] Bessonette, P. W., Schleyer, C. H., Duffy, K. P., Hardy, W. L., and Liechty, M. P.,“Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion,” SAE Technical Paper 2007-01-0191, 2007.
[19] Kokjohn, S.L., Hanson, R.M., Splitter, D.A. and Reitz, R.D. Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion. International Journal of Engine Research, 2011.
[20] Splitter D.A, Wissink M.L., Hendricks T.L, Ghandhi J.B., and Reitz R.D., “Comparison of RCCI, HCCI, and CDC Operation from Low to Full Load”, THIESEL 2012 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines, 2012.
[21] Dempsey, A., Walker, N., and Reitz, R., “Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion,” SAE International Journal of Fuels and Lubricants 6(1):170-187, 2013.
[22] Prikhodko, V., Curran, S., Parks, J., and Wagner, R., “Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition,” SAE International Journal of Fuels and Lubricants 6(2):329-335, 2013.
[23] Park,S.W., Reitz, R.D., “Numerical Study on the Low Emission Window of Homogeneous Charge Compression Ignition Diesel Combustion,” Combustion Science and Technology, 2007, 179 (11): 2279–2307.