بررسی عددی افزایش کیفیت اختلاط سیال غیرنیوتنی در یک میکروکانالT شکل

نوع مقاله : -

نویسندگان

1 دانشیار، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه یزد، یزد

چکیده

در این مقاله یک میکروکانال T شکل با دوره های اختلاط 1 الی 25 واحد و تغییر در هندسه هر دوره اختلاط در حالت دو بعدی و دائم توسط نرم افزار کامسول مورد ارزیابی عددی قرار گرفته است. یک پارامتر MQ برای مشخص نمودن کیفیت اختلاط در خروجی کانال و همچنین افت فشار استفاده شده است. همچنین تأثیر تعداد دوره های واحد اختلاط و موانع واقع در واحد اختلاط بر کیفیت اختلاط بررسی شده است. در ابتدا 6 مدل هندسه برای یک دوره اختلاط طراحی شد و بعد بدست آمدن نتایج عددی بهترین هندسه برای ادامه محاسبات و کار انتخاب شد. نتایج عددی بدست آمده برای هندسه c نشان می دهند که استفاده از 1، 5، 10، 15، 20، 25 واحد اختلاط در کانال، کیفیت اختلاط بدست آمده برای سیال خون به ترتیب 30 ، 46 ، 73 ، 85 ، 92 و 98 درصد می باشد که میتوان آن را برای استفاده در سیستم های شیمیایی مناسب دانست.

کلیدواژه‌ها


[1] N.-T. Nguyen and Z. Wu, "Micromixers—a review," Journal of micromechanics and microengineering, vol. 15, p. R1, doi: 10.1088/0960-1317/15/2/R01, (2004).
 
[2] M. A. Teamah, M. K. Dawood, and W. M. El-Maghlany, "Double diffusive natural convection in a square cavity with segmental heat sources," Scientific Research, vol. 54, pp. 287-301, 2011.
 
[3] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies," Electrophoresis, vol. 24, pp. 3563-3576, doi: https://doi.org/10.1002/elps.200305584, (2003).
 
[4] D. A. Fallah, M. Raad, S. Rezazadeh, and H. Jalili, "Increment of mixing quality of Newtonian and non-Newtonian fluids using T-shape passive micromixer: numerical simulation," Microsystem Technologies, vol. 27, pp. 189-199, doi: 10.1007/s00542-020-04937-z, (2021).
 
[5] Y. Fang, Y. Ye, R. Shen, P. Zhu, R. Guo, Y. Hu, et al., "Mixing enhancement by simple periodic geometric features in microchannels," Chemical Engineering Journal, vol. 187, pp. 306-310, doi: 10.1016/j.cej.2012.01.130, (2012).
 
[6] B. J. Kim, S. Y. Yoon, K. H. Lee, and H. J. Sung, "Development of a microfluidic device for simultaneous mixing and pumping," Experiments in fluids, vol. 46, pp. 85-95, doi:10.1007/S00348-008-0541-1, (2009).
 
[7] A. Shamloo, M. Mirzakhanloo, and M. R. Dabirzadeh, "Numerical simulation for efficient mixing of newtonian and non-newtonian fluids in an electro-osmotic micro-mixer," Chemical Engineering and Processing-Process Intensification, vol. 107, pp. 11-20, doi: 10.1016/j.cep.2016.06.003,  (2016).
 
[8] A. Afzal and K.-Y. Kim, "Flow and mixing analysis of non-Newtonian fluids in straight and serpentine microchannels," Chemical Engineering Science, vol. 116, pp. 263-274, doi: https://doi.org/10.1016/j.ces.2014.05.021,  (2014).
 
[9] X. Dong, K. Yaji, and X. Liu, "Optimum design of micromixer for a non-Newtonian fluid by topology optimization," Chemical Engineering Journal, vol. 428, p. 131367, doi: https://doi.org/10.1016/j.cej.2021.131367, (2022).
 
[10]         S. Tokas, M. Zunaid, and M. A. Ansari, "Non-Newtonian fluid mixing in a Three-Dimensional spiral passive micromixer," Materials Today: Proceedings, vol. 47, pp. 3947-3952, doi: 10.47176/JAFM.16.04.1450, (2021).
 
[11]         G. Kunti, A. Bhattacharya, and S. Chakraborty, "Analysis of micromixing of non-Newtonian fluids driven by alternating current electrothermal flow," Journal of Non-Newtonian Fluid Mechanics, vol. 247, pp. 123-131, doi: https://doi.org/10.1016/j.jnnfm.2017.06.010,  (2017).
 
[12]         N. T. Tayeb, K. Amar, K. Sofiane, L. Lakhdar, and L. Yahia, "Thermal mixing performances of shear-thinning non-Newtonian fluids inside Two-Layer Crossing Channels Micromixer using entropy generation method: Comparative study," Chemical Engineering and Processing-Process Intensification, vol. 156, p. 108096, doi: 10.15282/jmes.13.4.2019.15.0471, (2020).
 
[13]         A. Kumar Bansal, G. K. Nhaichaniya, M. Bhardwaj, and S. Chitnis, "Micromixing Optimization of Non-Newtonian Fluids with Heterogeneous Zeta Potential," Engineering Research Express,  doi: 10.1088/2631-8695/acecda, (2023).
 
[14]         A. Kouadri, E. Douroum, Y. Lasbet, T. T. Naas, S. Khelladi, and M. Makhlouf, "Comparative study of mixing behaviors using non-Newtonian fluid flows in passive micromixers," International Journal of Mechanical Sciences, vol. 201, p. 106472, doi: 10.1016/j.ijmecsci.2021.106472, (2021).
 
[15]         S. Baheri Islami, M. Khezerloo, and R. Gharraei, "The effect of chaotic advection on mixing degree and pressure drop of non-Newtonian fluids flow in curved micromixers," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, pp. 813-831,doi: https://doi.org/10.1007/s40430-016-0689-1, (2017).
 
[16]         M. M. Tatlιsoz and Ç. Canpolat, "Pulsatile flow micromixing coupled with ICEO for non-Newtonian fluids," Chemical Engineering and Processing-Process Intensification, vol. 131, pp. 12-19, doi: 10.1016/j.cep.2018.07.002, (2018).
 
[17]         H. Lv and X. Chen, "New insights into the mixing behavior of Non-Newtonian fluid in electroosmotic micromixer," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, p. 181, doi: 10.1007/s40430-022-03502-1, (2022).
 
[18]         E. Nematollahi and M. Sefid, "Numerical Study of Mixing Two-Components Non-Newtonian Fluids in Double T-Shaped Micromixers and Multiple T-Shaped with Aligned and Non-Aligned Inputs," Modares Mechanical Engineering, vol. 19, pp. 833-844, doi: http://mme.modares.ac.ir/article-15-24042-en.html, (2019).
 
[19]         A. Shamloo, M. Madadelahi, and S. Abdorahimzadeh, "Three-dimensional numerical simulation of a novel electroosmotic micromixer," Chemical Engineering and Processing: Process Intensification, vol. 119, pp. 25-33, doi: https://doi.org/10.1007/s11012-019-01018-y, (2017).
 
[20]         J. Yang, Y. Chen, C. Du, X. Guan, and J. Li, "Numerical simulation of electroosmotic mixing of non-Newtonian fluids in a micromixer with zeta potential heterogeneity," Chemical Engineering and Processing-Process Intensification, vol. 186, p. 109339, doi: https://doi.org/10.1016/j.cep.2023.109339, (2023).