تکامل تاریخی مدل های ویسکوزیته گردابی در روش شبیه سازی گردابه های بزرگ جریان های متلاطم

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران

2 استادیار، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران

چکیده

به دلیل پیچیدگی جریان های متلاطم، حل معادلات حاکم با جزئیات کامل امکان پذیر نیست. بنابراین از دیرباز روش های مختلفی برای حل معادلات و بررسی مشخصه های جریان متلاطم پیشنهاد شده است. از مهم ترین این روش ها می توان به شبیه سازی عددی مستقیم، شبیه‌ سازی گردابه های بزرگ و میانگین گیری رینولدز معادلات نویر-استوکس اشاره کرد. شبیه ‌سازی گردابه های بزرگ از لحاظ دقت و هزینه محاسبات، بین دو روش دیگر قرار دارد. در این روش، با اعمال یک فیلتر پایین گذر ساختار های بزرگ و کوچک جریان از یکدیگر جدا می شوند. ساختارهای بزرگ حل و ساختار های کوچک مدل می شوند. تا کنون مدل های مختلفی برای ساختارهای کوچک یا زیر شبکه پیشنهاد شده است. مدل های ویسکوزیته گردابی از معمول ترین این مدل ها هستند. اولین و ساده ترین مدل ویسکوزیته گردابی مدل اسماگورینسکی استاندارد است. دقت این مدل به ویژه برای هندسه های پیچیده بسیار کم است، به همین دلیل پژوهش های مختلفی به منظور افزایش دقت مدل اسماگورینسکی استاندارد انجام شده است که منجر به ارائه مدل های ویسکوزیته گردابی دقیق تر شده است. مدل اسماگورینسکی دینامیکی، مدل دینامیکی موضعی و مدل دینامیکی با ضرایب وابسته به مقیاس از دیگر مدل های پر کاربرد هستند. در این مقاله، سیر پیشرفت مدل های ویسکوزیته گردابی مورد استفاده در روش شبیه سازی گردابه های بزرگ به تفسیر ارائه شده است.

کلیدواژه‌ها

موضوعات


[1] C. Kleinstreuer, Modern fluid dynamics. Springer, 2018.
 
[2] S. Banerjee, "Compressible turbulence in space and astrophysical plasmas: Analytical approach and in-situ data analysis for the solar wind," Paris 11, 2014.
 
[3] M. Eckert, Arnold Sommerfeld: Science, Life and Turbulent Times 1868-1951. Springer Science & Business Media, 2013.
 
[4] M. Oskouhi and K. Esmaili, "A Historical Review of Turbulence Flow Modeling and Simulation in Hydraulics," (in Persian), Journal of Water and Sustainable Development, vol. 5, no. 2, pp. 49-60, 2019, doi: https://doi.org/10.0.86.51/JWSD.V5I2.68927.
 
[5] O. A. Doronina, "Turbulence Model Development Using Approximate Bayesian Computation," University of Colorado at Boulder, 2020.
 
[6] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," in Numerical prediction of flow, heat transfer, turbulence and combustion: Elsevier, 1983, pp. 96-116.
 
[7] L. N. Azadani and A. E. Staples, "Large-eddy simulation of turbulent barotropic flows in spectral space on a sphere," Journal of the Atmospheric Sciences, vol. 72, no. 5, pp. 1727-1742, 2015, doi: https://doi.org/10.1175/JAS-D-14-0183.1.
 
[8] P. Sagaut, Large eddy simulation for incompressible flows: an introduction. Springer Science & Business Media, 2005.
 
[9] E. Balaras, C. Benocci, and U. Piomelli, "Finite-difference computations of high Reynolds number flows using the dynamic subgrid-scale model," Theoretical and computational fluid dynamics, vol. 7, no. 3, pp. 207-216, 1995, doi: https://doi.org/10.1007/BF00312363.
 
[10]         A. Scotti and C. Meneveau, "A fractal model for large eddy simulation of turbulent flow," Physica D: Nonlinear Phenomena, vol. 127, no. 3-4, pp. 198-232, 1999, doi: https://doi.org/10.1016/S0167-2789(98)00266-8.
 [11]        F. K. Chow, R. L. Street, M. Xue, and J. H. Ferziger, "Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow," (in English), Journal of the Atmospheric Sciences, vol. 62, no. 7, pp. 2058-2077, 01 Jul. 2005 2005, doi: https://doi.org/10.1175/JAS3456.1.
 
[12]         J. Bardina, J. Ferziger, and W. Reynolds, "Improved subgrid-scale models for large-eddy simulation," in 13th fluid and plasmadynamics conference, 1980, p. 1357, doi: https://doi.org/10.2514/6.1980-1357.
 
[13]         P. J. Mason and D. J. Thomson, "Stochastic backscatter in large-eddy simulations of boundary layers," Journal of Fluid Mechanics, vol. 242, pp. 51-78, 1992, doi: https://doi.org/10.1017/S0022112092002271.
 
[14]         F. G. Schmitt, "About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity," Comptes Rendus Mécanique, vol. 335, no. 9-10, pp. 617-627, 2007, doi: https://doi.org/10.1016/j.crme.2007.08.004.
 
[15]         R. A. Clark, Evaluation of Subgrid-Scale Turbulence Models Using a Fully Simulated Turbulent Flow. Stanford University, 1977.
 
[16]         J. Smagorinsky, "General circulation experiments with the primitive equations: I. The basic experiment," Monthly weather review, vol. 91, no. 3, pp. 99-164, 1963, doi: https://doi.org/10.1175/1520-0493.
 
[17]         J. W. Deardorff, "A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers," Journal of Fluid Mechanics, vol. 41, no. 2, pp. 453-480, 1970, doi: https://doi.org/10.1017/S0022112070000691.
 
[18]         D. Lilly, "NCAR MANUSCRIPT 70-182," 1970, doi: https://doi.org/10.1029/EO052i006pIU332.
 
[19]         U. Schumann, "Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli," Journal of computational physics, vol. 18, no. 4, pp. 376-404, 1975, doi: https://doi.org/10.1016/0021-9991(75)90093-5.
 
[20]         W. Wenquan, Z. Lixiang, Y. Yan, and G. Yakun, "Finite Element Analysis of Turbulent Flows Using LES and Dynamic Subgrid-Scale Models in Complex Geometries," Mathematical Problems in Engineering, vol. 2011, 2011, doi: https://doi.org/10.1155/2011/712372.
 
[21]         E. S. Joe and D. A. Perumal, "Combustion modelling of sequential combustion in steam-methane reformation (SMR) furnace using adiabatic flamelet generated manifold," Thermal Science and Engineering Progress, vol. 40, p. 101795, 2023, doi: https://doi.org/10.1016/j.tsep.2023.101795.
 
[22]         A. R. Brown, J. Hobson, and N. Wood, "Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges," Boundary-Layer Meteorology, vol. 98, no. 3, pp. 411-441, 2001, doi: https://doi.org/10.1023/A:1018703209408.
 
[23]         P. Carlotti, "Two-point properties of atmospheric turbulence very close to the ground: Comparison of a high resolution LES with theoretical models," Boundary-layer meteorology, vol. 104, no. 3, pp. 381-410, 2002, doi: https://doi.org/10.1023/A:1016544705265.
 
[24]         J. Gullbrand and F. K. Chow, "The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering," Journal of Fluid Mechanics, vol. 495, pp. 323-341, 2003, doi: https://doi.org/10.1017/S0022112003006268.
 
[25]         M. Calaf, C. Meneveau, and J. Meyers, "Large eddy simulation study of fully developed wind-turbine array boundary layers," Physics of fluids, vol. 22, no. 1, 2010, doi: https://doi.org/10.1007/978-94-007-2482-2_38.
 
[26]         F. Attarzadeh, S. R. Khodashenas, and A. N. Ziaei, "Numerical Modeling over a Labyrinth Side Weirs by Using Large Eddy Simulation method (LES)," (in persian), Iranian Journal of Irrigation & Drainage, vol. 14, no. 1, pp. 286-300, 2020, doi: https://dorl.net/dor/20.1001.1.20087942.1399.14.1.25.8.
 
[27]         T. Ohta and M. Miyashita, "DNS and LES with an extended Smagorinsky model for wall turbulence in non-Newtonian viscous fluids," Journal of Non-Newtonian Fluid Mechanics, vol. 206, pp. 29-39, 2014, doi: https://doi.org/10.1016/j.jnnfm.2014.02.003.
 
[28]         P. Gnambode, P. Orlandi, M. Ould-Rouiss, and X. Nicolas, "Large-eddy simulation of turbulent pipe flow of power-law fluids," International Journal of Heat and Fluid Flow, vol. 54, pp. 196-210, 2015, doi: https://doi.org/10.1016/j.ijheatfluidflow.2015.05.004.
 
[29]         M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, "A dynamic subgrid‐scale eddy viscosity model," Physics of Fluids A: Fluid Dynamics, vol. 3, no. 7, pp. 1760-1765, 1991, doi: https://doi.org/10.1063/1.857955.
 
[30]         O. Métais and M. Lesieur, "Spectral large-eddy simulation of isotropic and stably stratified turbulence," Journal of Fluid Mechanics, vol. 239, pp. 157-194, 1992, doi: https://doi.org/10.1017/S0022112092004361.
 
[31]         M. Nourollahi, "Modified Structure Function Model Based on Coherent Structures," (in persian), International Journal of Engineering, vol. 26, no. 5, pp. 523-532, 2013, doi: https://doi.org/10.5829/idosi.ije.2013.26.05b.09.
 
[32]         D. K. Lilly, "A proposed modification of the Germano subgrid‐scale closure method," Physics of Fluids A: Fluid Dynamics, vol. 4, no. 3, pp. 633-635, 1992, doi: https://doi.org/10.1063/1.858280.
 
[33]         S. Khani and M. L. Waite, "Large eddy simulations of stratified turbulence: the dynamic Smagorinsky model," Journal of Fluid Mechanics, vol. 773, pp. 327-344, 2015, doi: https://doi.org/10.1017/jfm.2015.249.
 
[34]         H. S. Yoon, S. Balachandar, and M. Y. Ha, "Large eddy simulation of flow in an unbaffled stirred tank for different Reynolds numbers," Physics of fluids, vol. 21, no. 8, 2009, doi: https://doi.org/10.1063/1.3210776.
 
[35]         N. Kianvashrad and D. Knight, "Large Eddy Simulation of Hypersonic Turbulent Boundary Layers," Fluids, vol. 6, no. 12, p. 449, 2021, doi: https://doi.org/10.3390/fluids6120449.
 
[36]         W.-W. Kim and S. Menon, "A new dynamic one-equation subgrid-scale model for large eddy simulations," in 33rd aerospace sciences meeting and exhibit, 1995, p. 356, doi: https://doi.org/10.2514/6.1995-356.
 
[37]         D. Carati, S. Ghosal, and P. Moin, "On the representation of backscatter in dynamic localization models," Physics of Fluids, vol. 7, no. 3, pp. 606-616, 1995, doi: https://doi.org/10.1063/1.868585.
 
[38]         S. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll, "A dynamic localization model for large-eddy simulation of turbulent flows," Journal of fluid mechanics, vol. 286, pp. 229-255, 1995, doi: https://doi.org/10.1017/S0022112095000711.
 
[39]         V. Gravemeier, "A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation," Journal of Computational Physics, vol. 218, no. 2, pp. 677-701, 2006, doi: https://doi.org/10.1016/j.jcp.2006.03.001.
 
[40]         A. A. S. Parvar, H. R. Anbarloui, M. A. Parvar, "Turbulent flow simulation with large eddy simulation (LES) approach and Smagorinsky (SM) and local dynamic (LDSM) subgrid models in stair geometry," (in persian), The 22nd Annual Int. Conf. on Mech. Engineering, 2014, doi: https://civilica.com/doc/277468.
 
[41]         C. Meneveau and T. S. Lund, "The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence," Physics of fluids, vol. 9, no. 12, pp. 3932-3934, 1997, doi: https://doi.org/10.1063/1.869493.
 
[42]         F. Porté-Agel, C. Meneveau, and M. B. Parlange, "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer," Journal of Fluid Mechanics, vol. 415, pp. 261-284, 2000, doi: https://doi.org/10.1023/B:BOUN.0000020353.03398.20.
 
[43]         J. Kleissl, V. Kumar, C. Meneveau, and M. B. Parlange, "Numerical study of dynamic Smagorinsky models in large‐eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions," Water resources research, vol. 42, no. 6, 2006, doi: https://doi.org/10.1029/2005WR004685.
 
[44]         Y.-T. Wu and F. Porté-Agel, "Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations," Boundary-layer meteorology, vol. 138, pp. 345-366, 2011, doi: https://doi.org/10.1007/s10546-010-9569.
 
[45]         E. Bou-Zeid, C. Meneveau, and M. Parlange, "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows," Physics of fluids, vol. 17, no. 2, 2005, doi: https://doi.org/10.1063/1.1839152.
 
[46]         G. Efstathiou, R. Plant, and M.-J. Bopape, "Simulation of an evolving convective boundary layer using a scale-dependent dynamic Smagorinsky model at near-gray-zone resolutions," Journal of Applied Meteorology and Climatology, vol. 57, no. 9, pp. 2197-2214, 2018, doi: https://doi.org/10.1175/JAMC-D-17-0318.1.
 
[47]         F. Nicoud and F. Ducros, "Subgrid-scale stress modelling based on the square of the velocity gradient tensor," Flow, turbulence and Combustion, vol. 62, no. 3, pp. 183-200, 1999, doi: https://doi.org/10.1023/A:1009995426001.
 
[48]         E. B. H. Kaviani, "Using large eddy simulation to investigate the effect of changing the flow angle in acoustic calculations," (in persian), 12th Int. Conf. on Acoustics and Vibrations,, 2022, doi: https://civilica.com/doc/1611154.
 
[49]         V. M. Sharafabadi and M. Fathali, "Comparison of effects of four subgrid-scale turbulence models in large eddy simulation of a large wind farm," (in persian), Journal of Mechanical Science and Technology, pp. 1-11, 2023, doi: https://doi.org/10.1007/s12206-023-0420-y.
 
[50]         Q. H. M. Safarzadeh, H. Pasdar Shahri, "Investigating the accuracy of subgrid models in modeling internal rotating fire by large eddy simulation," (in persian), Fuel and Combustion, 2020, doi: https://civilica.com/doc/1386457.
 
[51]         W.-w. Zhao, F.-c. Zhou, G.-q. Fan, and D.-c. Wan, "Assessment of subgrid-scale models in wall-modeled large-eddy simulations of turbulent channel flows," Journal of Hydrodynamics, pp. 1-10, 2023, doi: https://doi.org/10.1007/s42241-023-0039-6.
 
[52]         S. Malik et al., "Shear improved Smagorinsky model for large eddy simulation of flow in a stirred tank with a Rushton disk turbine," Chemical Engineering Research and Design, vol. 108, pp. 69-80, 2016, doi: https://doi.org/10.1016/j.cherd.2016.02.035.
[53]         H. J. Bae, A. Lozano-Durán, S. T. Bose, and P. Moin, "Dynamic slip wall model for large-eddy simulation," Journal of fluid mechanics, vol. 859, pp. 400-432, 2019, doi: https://doi.org/10.1017/jfm.2018.838.
 
[54]         W. Rozema, H. J. Bae, and R. W. Verstappen, "Local dynamic gradient Smagorinsky model for large-eddy simulation," Physical Review Fluids, vol. 7, no. 7, p. 074604, 2022, doi: https://doi.org/10.1103/PhysRevFluids.7.074604.
 
[55]         R. Agrawal, M. P. Whitmore, K. P. Griffin, S. T. Bose, and P. Moin, "Non-Boussinesq subgrid-scale model with dynamic tensorial coefficients," Physical Review Fluids, vol. 7, no. 7, p. 074602, 2022, doi: https://doi.org/10.1103/PhysRevFluids.7.074602.