بررسی مکانیزم ‏های بهبود خواص مکانیکی با افزودن نانو ذرات به کامپوزیت ‌ها

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران

2 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران

چکیده

نانوذره یا ذره بی ‌نهایت ریز معمولاً به عنوان ذره ای از ماده تعریف می ‌شود که قطری بین ۱ تا ۱۰۰ نانومتر  (nm) دارد. خواص نانوذرات اغلب به‌ طور قابل توجهی با ذرات بزرگتر ماده متفاوت است. نانوذرات مکانیک نابجایی متفاوتی را نشان می‌ دهد که همراه با ساختار سطحی منحصر به فردشان، منجر به خواص مکانیکی متفاوت از مواد توده‌ ای می گردد. امروزه با افزودن نانوذرات خواص مکانیکی کامپوزیت‌ ها را بهبود می ‌بخشند. نانوذرات به دلیل ریز بودن باعث افزایش سطح میان ماده زمینه و تقویت‌ کننده شده و لذا باعث بهبود خواص مکانیکی خواهند شد. نوع نانوذره مورد استفاده، ابعاد، درصد وزنی و نحوه توزیع نانوذره از عوامل تعیین‌ کننده در بهبود خواص مکانیکی می‌ باشند. در مطالعه حاضر ضمن ارائه مفاهیم مربوط به نانوکامپوزیت، تاثیر پنج نانوذره مختلف بر خواص مکانیکی رایج مد نظر طراحان سازه بررسی ‌می ‌شود. نتایج نشان می ‌دهند افزودن نانوذرات تا درصد وزنی مشخصی باعث بهبود خواص شده و بیش از آن مقدار گاهاً اثر عکس خواهد داشت که یکی از دلایل آن کلوخه شدن نانوذرات می‌ باشد. 

کلیدواژه‌ها

موضوعات


[1] Ahmad, J., Machining of Polymer Composites, Springer US, pp. XII, Vol. 315, (2009).
 
[2] Soltani, M., Sotoudeh, A., and Sokhandani, N., Explaining the factors affecting the construction of composites by vacuum injection method, Scientific Journal of Mechanical Engineers, Vol. 26, No. 1, pp. 79-87, (2017). (in Persianفارسی )
 
[3] Fischer, H., Polymer nanocomposites: from fundamental research to specific applications, Materials Science and Engineering, Vol. 23, No. 6, pp. 763-772, (2003.(
 
[4] Daniel, I.M., and Ishai, O., Engineering Mechanics of Composite Materials, 2nd Edition, Oxford University Press, New York, (2006).
 
[5]            Ghamati, M., and Sadeghian, M.S.S., Nano Composite, The third national conference of new technologies of chemistry and chemical engineering, (2014). (in Persianفارسی )
 
[6] Guo, Z., Chen, Y., and Lu, N.L., Multifunctional Nanocomposites for Energy and Environmental Applications, John Wiley & Sons, Vol. 1, (2018).
 
[7]           Bikiaris, D., Microstructure and properties of polypropylene/carbon nanotube nanocomposites, Materials, pp. 2884-2946, (2010).
 
[8]           Fu, Sh., Sun, Z., Huang, P., Li, Y., and Hu, N., Some basic aspects of polymer nanocomposites: A critical review, Nano Materials Science, Vol. 1, pp. 2-30, (2019).
 
[9] Camargo, P.H.C., Satyanarayana, K.G., and Wypych, F., Nanocomposites: synthesis, structure, properties and new application opportunities, Materials Research, Vol. 12, pp. 1-39, (2009).
 
[10] Alexandre, M., and Dubois, P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering: C, Vol. 28, pp. 1-63, (2000).
 
[11] Herron, N., and Thorn, D.L., Nanoparticles: uses and relationships to molecular cluster compounds, Advanced Materials, pp. 1173-1184, (1998).
 
[12] Favier, V., Cavaille, J.Y., Canova, G.R., and Shrivastava, S.C., Mechanical percolation in cellulose whisker nanocomposites, Polymer Engineering Science, pp. 1732-1739, (1997).
 
[13] Chazeau, L., Cavaillé, J.Y., Canova, G., Dendievel, R., and Boutherin, B., Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers, Journal of Applied Polymer Science, pp. 1797-1808, (1999).
 
[14] Ogawa, M., and Kazuyuki, K., Preparation of inorganic–organic nanocomposites through intercalation of organoammonium ions into layered silicates, Bulletinn of the Chemical Society of Japan, pp. 2593-2618, (1997).
[15] Schmidt, D., Shah, D., and Giannelis, E., New advances in polymer/layered silicate nanocomposites, Current Opinion in Solid State & Materials Science, pp. 205-212, (2002).
 
[16] Ray, S.S., and Okamoto, M., Polymer - layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, pp. 1539-1641, (2003).
 
[17] Shokrieh, M., Zeinedini, A., and Ghoreishi S.M., Effects of adding multiwall carbon nanotubes on mechanical properties of Epoxy resin and Glass/Epoxy laminated composite, Modares Mechanical Engineering, Vol. 9, pp. 125-133, (2015).
 
[18] Shameli, M., Choupani, N., and Razavi, M.K., Measurement of mixed-mode fracture toughness of polypropylene using multispecimen J-integral method, Modares Mechanical Engineering, Vol. 16, pp. 333-334, (2016). (in Persianفارسی )
 
[19] Yang, F., Jin, C., Yang, D., Jiang, Y., Li, J., Di, Y., Hu, J., Wang, C., Ni, Q., and Fu, D., Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment, European Journal of Cancer, Vol. 47, pp. 1873-1882, (2011).
 
[20] Kalaitzidou, K., Fukushima, H., and Drzal, L.T., A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Composites Science and Technology, Vol. 67, pp. 2045-2051, (2007).
 
[21] Torkelson, J., and Wakabayashi, K., Polymer-graphite nanocomposites via solid-state shear pulverization, US Patent No. US 7906053 B1, (2011).
 
[22] Gharehbeyglou, M., S.Izadhkah, M., Erfannya, H., and Entezami, A., Improvement of mechanical and thermal properties of chemically modified graphene oxide/polypropylene nanocomposite, Modares Mechanical Engineering, Vol. 16, pp. 206-196, (1395). (in Persianفارسی )
 
[23] Neitzel, I., Mochalin, V., Knoke, I., Palmese G.R., and Gogotsi, Y., Mechanical properties of epoxy composites with high contents of nanodiamond, Composites Science and Technology, Vol. 71, pp. 710-716, (2011).
 
[24] Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y., The properties and application of nanodiamonds, Nature Nanotechnology, Vol. 7, pp. 11-23, (2012).
 
[25] Mochalin, V.N., and Gogotsi., Y., Nanodiamond-polymer composites, Diamond & Related Materials, Vol. 58, pp. 161-171, (2015).
[26] Ayatollahi M.R., Alishahi, E., Doagou-R, S., and Shadlou, S., Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites, Composites Part B, Vol. 43, pp. 3425-3430, (2012).
 
[27] Hashemi, M., and Shojaei, A., Morphology development and mechanical properties of unsaturated polyester resin containing nanodiamond, Polymer International, Vol. 66, pp. 950-959, (2017).
 
[28] He, H., Zhang, Z., Wang, J. and Li, K., Compressive properties of nano-calcium carbonate/epoxy and its fibre composites, Composites Part B: Engineering, Vol. 45, pp. 919-924, (2013).
 
[29] Abdi, A., Eslami Farsani, R., and Khosravi, H., Evaluating the mechanical behavior of basalt fibers/epoxy composites containing surface-modified CaCO3 nanoparticles, Fibers and Polymers, Vol. 19, pp. 635-640, (2018).
 
[30] Li, L., Zou, H., Shao, L., Wang, G., Chen, J., Study on mechanical property of epoxy composite filled with nano-sized calcium carbonate Particles, Journal of Materials Science, Vol. 40, pp. 1297-1299, (2005).
 
[31] Shahbakhsh, S., Khosravi, H., Tohidlou, E., Improvement in interlaminar shear strength and flexural properties of carbon fiber/epoxy composite using surface-modified carbonate calcium, Journal of Science and Technology of Composites, Vol. 6, Issue 3, pp. 343-350, (2019).
 
[32] Farahba, I., Manafi, S., Shahedi Asl, M., and Nayebi, B., Investigating mechanical and thermal properties of NBR/PP elastomer thermoplastic nanocomposite and clay nanoparticles, Vol. 8, pp. 28-17, (1397). (in Persianفارسی )
 
[33] Wang, L., Wang, K., Chen, L., Zhang, Y., and He, C., Preparation, morphology and thermal/ mechanical properties of epoxy/clay nanoclay composite, Composites Part A: Applied Science and Manufacturing, Volume 37, Issue 11, pp. 1890-1896, (2006).
 
[34] Alinaghizadeh, E., Hashemyan, S., and Nateghi, M., The use of nanoclay particles in improving the functional properties of rice bran-plastic composite, Journal of Textile and Clothing Science and Technology, Vol. 8, pp. 30-25, (2018). (in Persianفارسی )
[35] Bagheryan Mahmoudabadi, A., Nodehi, A., and Ataei, M., Properties of nitrile rubber/clay nanocomposites prepared by in situ emulsifier-free emulsion polymerization, Polymer Science and Technology, Vol. 28, pp. 242-233, (1394). (in Persianفارسی )
 
[36] Wu, Q., Lei, Y., Yao, F., Xu, Y., and Lian, K., Properties of HDPE/clay/wood Nanocomposites, Journal of Plastic Technology, Vol. 27, pp. 108-115, (2007).
 
[37] Samal, S.K., Nayak, S.K., Mohanty, S., Polypropylene nanocomposites: effect of organo-modified layered silicates on mechanical, thermal and morphological performance, Journal of Thermoplastic Composite Materials, Vol. 8, pp. 243-263, (2008).
 
[38] Zhao, Y., Wang, K., Zhu, F., Xue, P., and Jia, M., Properties of poly(vinylchloride)/woodflour/montmorillonite composites: effects of coupling agents and layered silicate, Journal of Polymer Degradation and Stability, Vol. 91, pp. 2874-2883, (2006).
 
[39] Rezanezhad, S., Hour, M., Joudat, H., and Shaabani, H., Investigating the effect of increasing carbon nanotubes on the mechanical properties of pre-impregnated glass fibers/epoxy resin used in wind turbine blades, The second specialized conference on nanotechnology in the electricity and energy industry, (2014). (in Persianفارسی )
 
[40] Frankland, S.J.V., Caglar, A., Brenner, D.W., and Griebel, M., Molecular simulation of the in uence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, The Journal of Physical Chemistry B, vol. 106, pp. 3046-3048, (2002).
 
[41] Dehghan Baniyani, D., J.Jahromi, S.A., and Zebarjad, S.M., Investigating the role of carbon nanotubes on the tensile behavior of vinyl ester nanocomposite, New Processes in Material Engineering, Vol. 8, pp. 64-57,(2013). (in Persianفارسی )
 
[42] Vahedi, F., Shahverdi, H.R., Shokrieh, M.M., and Esmkhani, M., Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites, New Carbon Materials, Vol. 29, pp. 419-425, (2014).