مروری بر فرایندهای اتصال حالت جامد مبتنی بر اصطکاک دورانی

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز

2 دانشیار، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند

چکیده

فناوری­ های اتصال و فرآوری حالت جامد در حال تبدیل شدن به یک جایگزین دایمی برای اتصال آلیاژهای نرم هستند که با روش ­های متداول ذوبی به سختی قابل جوشکاری هستند. با گذشت سه دهه از ابداع این روش، جوشکاری اصطکاکی اغتشاشی خود را به عنوان پیشتاز در اتصال ورق های آلومینیومی با استحکام بالا معرفی نموده است که کاربرد اصلی آن ­ها در صنایع خودروسازی و صنایع فضایی است. همچنین این روش موفقیت نسبی در اتصال سایر آلیاژها نیز از خود نشان داده است. با توجه به موفقیت قابل توجه جوشکاری اصطکاکی اغتشاشی، زمینه لازم برای استفاده در کاربردهای پیچیده­ تر و جوشکاری آلیاژهای با استحکام بالاتر فراهم شد. با این حال، جوشکاری اصطکاکی اغتشاشی تنها فرایند موفق مبتنی بر اصطکاک دورانی نیست. در سال ­های اخیر جوشکاری اصطکاکی هیدروپیلار که روشی موفق در ترمیم آسیب های سطحی و عمقی آلیاژهای فولادی است، بسیار مورد توجه قرار گرفته است. در مقاله حاضر، عمده فرایندهای مبتنی بر اصطکاک دورانی در دو دسته اصلی جوشکاری اصطکاکی اغتشاشی و جوشکاری اصطکاکی هیدروپیلار معرفی شده و مورد بحث و بررسی قرار گرفته است. 

کلیدواژه‌ها

موضوعات


[1] Padhy, G.K., Wu, C.S., and Gao, S., Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review, Journal of Materials Science and Technology, Vol. 34(1), pp. 1-38, (2018).
 
[2] Meinhardt, C.P., Chludzinski, M., Ribeiro, R.F., Rocha, C.L.F., Santos, A.C.S., and Strohaecker, T.R., Evaluation of friction hydro-pillar processing welding in duplex stainless steels (UNS S31803), Journal of Materials Processing Technology, Vol. 246, pp. 158-166, (2017).
 
[3] Karthik, G.M., Ram, G.J., and Kottada, R.S., Friction stir selective alloying, Materials Science and Engineering: A, Vol. 684, pp. 186-190, (2017).
 
[4] Li, W., Yang, K., Yin, S., Yang, X., Xu, Y., and Lupoi, R., Solid-state additive manufacturing and repairing by cold spraying: A review, Journal of materials science and technology, Vol. 34(3), pp. 440-457, (2018).
 
[5] Zhong, Y.B., Wu, C.A. and Padhy, G.K., Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding, Journal of Materials Processing Technology, Vol. 239, pp. 273-283, (2017).
 
[6] Ahmed, M.M.Z., Wynne, B.P., Rainforth, W.M., and Threadgill, P.L., Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium, Scripta Materialia, Vol. 64(1), pp. 45-48, (2011).
 
[7] Shi, L., Wu, C.S., and Liu, H.J., The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding, International Journal of Machine Tools and Manufacture, Vol. 91, pp. 1-11, (2015).
 
 [8]          Sued, M.K., Pons, D., Lavroff, J., and Wong, E.H., Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process, Materials and Design (1980-2015), Vol. 54, pp. 632-643, (2014).
 
[9] Padhy, G.K., Wu, C.S., and Gao, S., Auxiliary energy assisted friction stir welding–status review, Science and Technology of Welding and Joining, Vol. 20(8), pp. 631-649, (2015).
 
[10] Sajed, M., and Bisadi, H., Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys, Welding in the World, Vol. 60(1), pp. 33-40, (2016).
 
[11] Sajed, M., Parametric study of two-stage refilled friction stir spot welding, Journal of Manufacturing Processes, Vol. 24, pp. 307-317, (2016).
 
[12] Upadhyay, P., Hovanski, Y., Jana, S., and Fifield, L.S., Joining dissimilar materials using friction stir scribe technique, Journal of Manufacturing Science and Engineering, Vol. 139(3), pp. 034501, (2017).
 
[13] Chi, Y., Gu, G., Yu, H., and Chen, C., Laser surface alloying on aluminum and its alloys: A review., Optics and Lasers in Engineering, Vol. 100, pp. 23-37, (2018).
 
[14] Qin, D., Shen, H., Shen, Z., Chen, H., and Fu, L., Manufacture of biodegradable magnesium alloy by high speed friction stir processing, Journal of Manufacturing Processes, Vol. 36, pp. 22-32, (2018).
 
[15] Mane, K.M., and Hosmani, S.S., Friction stir surface processing of Al 6061 alloy: role of surface alloying with copper and heat-treatment, Transactions of the Indian Institute of Metals, Vol. 71(6), pp. 1411-1425, (2018).
 
[16] Santos, T.G., Miranda, R.M., Vilaça, P., and Teixeira, J.P., Modification of electrical conductivity by friction stir processing of aluminum alloys, The International Journal of Advanced Manufacturing Technology, Vol. 57(5), pp. 511-519, (2011).
 
[17] Azimi-Roeen, G., Kashani-Bozorg, S.F., Nosko, M., Nagy, Š., and Maťko, I., Formation of Al/(Al13Fe4+ Al2O3) nano-composites via mechanical alloying and friction stir processing, Journal of Materials Engineering and Performance, Vol. 27(2), pp. 471-482, (2018).
 
[18] Cui, L., Yang, X., Wang, D., Hou, X., Cao, J., and Xu, W., Friction taper plug welding for S355 steel in underwater wet conditions: Welding performance, microstructures and mechanical properties, Materials Science and Engineering: A, Vol. 611, pp. 15-28, (2014).
 
 [19] Hattingh, D.G., Bulbring, D.L.H., Els-Botes, A., and James, M.N., Process parameter influence on performance of friction taper stud welds in AISI 4140 steel, Materials and Design, Vol. 32(6), pp. 3421-3430, (2011).
 
[20] Teng, J., Wang, D., Wang, Z., Zhang, X., Li, Y., Cao, J., Xu, W., and Yang, F., Repair of arc welded DH36 joint by underwater friction stitch welding. Materials and Daesign, Vol. 118, pp. 266-278, (2017).
 
[21] Li, W., Jiang, D., Yang, L., Pan, J., Qu, R., and Sun, T., Numerical simulation of temperature field and prediction of microstructure in friction hydro pillar processing, Journal of Materials Processing Technology, Vol. 252, pp. 370-380, (2018).
 
[22] Kanan, L.F., Vicharapu, B., Bueno, A.F.B., Clarke, T., and De, A., Friction hydro-pillar processing of a high carbon steel: joint structure and properties, Metallurgical and Materials Transactions B, Vol. 49(2), pp. 699-708, (2018).
 
[23] Cui, L., Yang, X., Wang, D., Cao, J., and Xu, W., "Experimental study of friction taper plug welding for low alloy structure steel: welding process, defects, microstructures and mechanical properties", Materials and Design, Vol. 62, pp. 271-281, (2014).  
 
[24] Xiong, J., Yang, X., Lin, W., and Liu, K., "Microstructural characteristics and mechanical heterogeneity of underwater wet friction taper plug welded joints for low-alloy pipeline steel," Materials Science and Engineering: A, Vol. 695, pp. 279-290, (2017).
 
[25] Chludzinski, M., Paes, M., Bastian, F., and Strohaecker, T., "Fracture toughness of friction hydro-pillar processing welding in C–Mn steel", Materials and Design, Vol. 33, pp. 340-344, (2012).
 
[26] Metz, D., and Barkey, M., "Fatigue behavior of friction plug welds in 2195 Al–Li alloy", International journal of fatigue, Vol. 43, pp. 178-187, (2012).
 
[27] Zhang X., Deng, C., Wang, D., Wang, Z., Teng, J., Cao, J., Xu, W., and Yang, F., "Improving bonding quality of underwater friction stitch welds by selecting appropriate plug material and welding parameters and optimizing joint design," Materials and Design, Vol. 91, pp. 398-410, (2016).
 
[28] A. Ambroziak and B. Gul, "Investigations of underwater FHPP for welding steel overlap joints," Archives of civil and mechanical engineering, vol. 7, no. 2, pp. 67-76, 2007.
 
[29] Y. Yin, X. Yang, L. Cui, F. Wang, and S. Li, "Material flow influence on the weld formation and mechanical performance in underwater friction taper plug welds for pipeline steel," Materials and Design, Vol. 88, pp. 990-998, (2015).
 
[30] Yin, Y., Yang, X., Cui, L., Cao, J., and Xu, W., "Microstructure and mechanical properties of underwater friction taper plug weld on X65 steel with carbon and stainless steel plugs", Science and Technology of Welding and Joining, Vol. 21, No. 4, pp. 259-266, (2016).
 
[31] Wang, Z., Teng, J., Wang, T., Cui, L., Liu, H., Yang, J., Zhang, Y., and Zhu, H., "Observations of repair process by friction stitch welding in simulated wet conditions-Flaws, microstructure and hardness evolutions in overlapping welds", Journal of Materials Processing Technology, Vol. 264, pp. 220-233, (2019).
 
[32] Han, B., Huang, Y., Lv, S., Wan, L., Feng, J., and Fu, G., "AA7075 bit for repairing AA2219 keyhole by filling friction stir welding", Materials and Design, Vol. 51, pp. 25-33, (2013).
 
[33] Du, B., Cui, L., Yang, X., Wang, D., and Sun, Z., "Weakening mechanism and tensile fracture behavior of AA 2219-T87 friction plug welds", Materials Science and Engineering: A, Vol. 693, pp. 129-135, (2017).
 
[34] Du, B., Sun, Z., Yang, X., Cui, L., Song, J., and Zhang, Z., "Characteristics of friction plug welding to 10 mm thick AA2219-T87 sheet: Weld formation, microstructure and mechanical property", Materials Science and Engineering: A, Vol. 654, pp. 21-29, (2016).
 
[35] Hattingh, D., James, M., Newby, M., Scheepers, R., and Doubell, P., "Damage assessment and refurbishment of steam turbine blade/rotor attachment holes", Theoretical and Applied Fracture Mechanics, Vol. 83, pp. 125-134, (2016).