مقایسه ی توان استحصال شده در دو سامانه برداشت انرژی الکترومغناطیسی با فنریت های خطی و غیرخطی

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران

2 دانشیار، دانشکده مهندسی مکانیک، دانشکدگان فنی، دانشگاه تهران، تهران

چکیده

برداشت انرژی از انرژی اتلاف شده در محیط به منظور راه اندازی ادوات الکترونیکی با توان پایین، یکی از روش­ های رایج برای به ­کارگیری انرژی ­های تجدیدپذیر می ­باشد. هدف اصلی از این فناوری، فراهم کردن منابع انرژی الکتریکی در نقاط دور از دسترس و همچنین شارژ کردن وسایل ذخیره ­ی انرژی از جمله خازن و باتری می ­باشد. مطالعه حاضر به مقایسه ­ی توان استحصال شده از دو سامانه برداشت کننده ­ی انرژی الکترومغناطیسی با فنریت­ های خطی و غیرخطی (در دو حالت شبیه سازی در نرم افزار کامسول و کار­های آزمایشگاهی) که با استفاده از حرکت اعضای بدن انسان مورد ارتعاش قرار می­ گیرد، می­ پردازد. از نوآوری این پژوهش می ­توان به استفاده از فنریت به کار رفته در سامانه برداشت انرژی، که از یک سو دارای فنریت خطی و از سوی دیگر تحت تآثیر فنریت غیر خطی قرار دارد و همچنین صحت سنجی نتایج شبیه سازی با استفاده از سامانه آزمایشگاهی طراحی شده، اشاره نمود.

کلیدواژه‌ها

موضوعات


[1] Colak, R., Bayindir, I., and Sefa, S., Demirbas, H., Using of alternative energy sources III, Turkey: Renewable Energy Sources, (2005).
 
[2] Ergun, C., Yilmaz, S., Ozdemir, E., Gul, O., and Kalenderli, O., Piezoelectric materials and application areas, In: Denizli International Materials Conference, Pamukkale, Turkey, (2006).
 
[3] Cottone, F., and Vocca, H., Gammaitoni, L., Nonlinear energy harvesting, Physical Review Letters, Vol. 102, Article ID. 080601, (2009).
 
[4] Tang, L.H., Yang, Y.W., A nonlinear piezoelectric energy harvester with magnetic oscillator, Applied Physics Letters, Vol. 101, No. 9, (2012).
 
[5] Guo, X., Zhang, Y., Fan, K., and Lee, C., A comprehensive study of non-linear air damping and “pull-in” effects on the electrostatic energy harvesters, Energy Conversion and Management, Vol. 203, 112264, (2020).         
 
[6] Xie, Q., Zhang, T., Pan, Y., Zhang, Z., Yuan, Y., and Liu, Y., A novel oscillating buoy wave energy harvester based on a spatial double X-shaped mechanism for self-powered sensors in sea-crossing bridges, Energy Conversion and Management, Vol. 204, 112286, (2020).  
 
[7] Sun, W., Guo, F., and Seok, J., Development of a novel vibro-wind galloping energy harvester with high power density incorporated with a nested bluff-body structure, Energy Conversion and Management, Vol. 197,111880, (2019).
 
[8] Hong, SD., Kim, KB., Hwang, W., Song, YS., Cho, J., Jeong, SY., Ahn, JH., Kim, GH., Cheong, H., and Sung, TH., Enhanced energy generation performance of a lanandfilled road capable piezoelectric harvester to scavenge energy from passing vehicles, Energy Conversion and Management, (2020).
 
[9] Li, Z., Yan, Z., Luo, J., and Yang, Z., Performance comparision of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration, Energy Conversion and Management, Vol. 179, pp. 132-140, (2019).
 
[10] Stamatellou, AM., and I.Kalfas, A., Testing of piezoelectric energy harvesters isolated from base vibrations, Energy Conversion and Management, Vol. 196, pp. 717-728, (2019).
 
[11] Toyabur, RM., Salauddin, M., Cho, HO., and Park, JY., A multimodal hybrid energy harvester based on piezoelectric electromagnetic mechanisms for low frequency ambient vibrations, Energy Conversion and Management, Vol. 168, pp. 454-466, (2018).
 
[12] Paul, S., Chang, J.H., Design of novel electromagnetic energy harvester to power a deicing robot and monitoring sensors for transmission lines, Energy Conversion and Management, Vol.  197, 111868, (2019).
 
[13] Halim, M.A., Rantz, R., Zhang, Q., Gu, L., Yang, K., and Roundy, S., An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion, Appl Energy, Vol. 217, pp. 66-74, (2018).
 
[14] Liu, H., Gudla, S., Hassani, F.A., Heng , C.H., Lian, Y., and Lee, C.K., Investigation of the nonlinear electromagnetic energy harvesters from hand shaking, IEEE Sensors Journal, Vol.15(4), pp. 2356-64, (2015).
 
[15] Saha, C.R., O'donnell, T., Wang, N., and McCloskey, P., Electromagnetic generator for harvesting energy from human motion, Journal Sensors and Actuators A: Physical, Vol. 147(1), pp. 248-253, (2019). 
 
[16] Foisal, A.R.M., and Hong, C., Chung, G.S., Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever, Journal Sensors and Actuators A: Physical, Vol. 182, pp. 106-13, (2020).
 
[17] Munaz, A., Lee, B.C., and Chung, G.S., A study of an electromagnetic energy harvester using multi-pole magnet, Journal Sensors and Actuators A: Physical, Vol. 201, pp. 134-40, (2013).
 
[18] Salauddin, M., and Park, J.Y., Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array, Smart Mater Struc, Vol. 26, 035011, (2017).
 
[19] Wang, W., Cao, J., Zhang, N., Lin, J., and Liao, W.H., Magnetic-spring based energy harvesting from human motions: design, modeling and experiments, Energy Convers Manag, Vol. 132, pp. 189-9, (2017).
 
[20] Gui, P., Deng, F., Liang, Z., Cai, Y., Chen, J., Micro linear generator for harvesting mechanical energy from the human gait, Energy,  Vol. 154, pp. 365-73, (2018).
 
[21] Halim, M.A., Cho, H., Salauddin, M., and Park, J.Y., A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion, Journal Sensors and Actuators A: Physical, Vol. 249, pp. 23-31, (2016).
 
[22] Kanqi, F., and Yiwei, Z., Capturing energy from ultra-low frequency vibrations and human motion through  a monostable electromagnetic energy harvester, Energy, Vol. 169, pp. 356-3, (2019).