تحلیل میکرومکانیکی خواص موثر کامپوزیت های زمینه پلیمری حاوی ذرات کروی پیزوالکتریک و نانولوله های کربنی

نوع مقاله : علمی پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی شرق گیلان، دانشگاه گیلان، رودسر-واجارگاه

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت

چکیده

در این مقاله از رویکرد میکرومکانیکی موری تاناکا برای محاسبه خواص الاستیک و پیزوالکتریک کامپوزیت هیبریدی با زمینه ی‌ پلی آمید و تقویت شده با ذرات پیزوالکتریک تیتانات زیرکونات سرب و نانولوله ی کربنی استفاده شده است. مدل سازی شامل دو مرحله است که ابتدا اثر توزیع نانولوله ی کربنی در زمینه ‌ی پلی آمید محاسبه شده و در مرحله­ی بعدی از نتایج به دست آمده برای انجام محاسبات اضافه کردن ذرات پیزوالکتریک استفاده شده است. مدل با نتایج آزمایشگاهی و مطالعات پیشین اعتبار سنجی شده است. افزایش کسر حجمی ذرات پیزوالکتریک باعث افزایش مدول های الاستیک، مدول های برشی و ثوابت پیزوالکتریک می شود. مدل سازی برای حالت‌ پخش یکنواخت و غیر یکنواخت نانولوله های کربنی انجام شده است. نتایج نشان می دهد با افزودن نانولوله ی کربنی، مدول های الاستیک و ثوابت پیزوالکتریک افزایش می یابند. همچنین تجمع نانولوله های کربنی باعث کاهش این مدول ها خواهد شد.  

کلیدواژه‌ها

موضوعات


[1] Odegard, G.M., Constitutive modeling of piezoelectric polymer composites, Acta Materialia, Vol. 52(18), pp. 5315-5330, (2004).
 
[2] Dunn, M.L., and Taya, M., Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites, International Journal of Solids and Structures, Vol. 30(2), pp. 161-175, (1993).
 
[3] Lin, C.H., and Muliana, A., Micromechanics modeling of hysteretic responses of piezoelectric composites, In Creep and fatigue in polymer matrix composites, Woodhead Publishing, pp. 121-155, (2019).
 
[4] Mishra, N., Das, K., and Mori–Tanaka, A., based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions, SN Applied Sciences, Vol. 2(7), 1-14, (2020).
 
[5] Zhou, Z., Ni, Y., Zhu, S., Tong, Z., Sun, J., and Xu, X. An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells, Composite Structures, Vol. 207, pp. 292-303. (2019).
 
[6] Moghri, M., Madic, M., Omidi, M., and Farahnakian, M., Surface roughness optimization of polyamide-6/nanoclay nanocomposites using artificial neural network: genetic algorithm approach, The Scientific World Journal, Vol. 2014, Article ID 485205, pp. 1-7, (2014). (in Persianفارسی )
 
[7] Iijima, S., Helical microtubules of graphitic carbon, Nature, Vol. 354(6348), pp. 56-58, (1991).
 
[8] Mohd Nurazzi, N., Asyraf, M.M., Khalina, A., Abdullah, N., Sabaruddin, F.A., Kamarudin, S.H., and Sapuan, S.M., Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview, Polymers, Vol. 13(7), pp. 1047, (2021).
 
[9] Pan, J., Bian, L., Zhao, H., and Zhao, Y., A new micromechanics model and effective elastic modulus of nanotube reinforced composites, Computational Materials Science, Vol. 113, pp. 21-26, (2016).
 
[10] Harris, P.J., Carbon nanotube composites, International Materials Reviews, Vol. 49(1), pp. 31-43, (2004).
 
[11] Haghighi, S., Ansari, R., and Keramati, Y., A molecular dynamics study on the vibrational behavior of perfect and defective hybrid carbon boron-nitride heteronanotubes, Diamond and Related Materials, Vol. 125, Article ID 108990, (2022).
 
[12]         Rubel, R.I., Ali, M.H., Jafor, M.A., and Alam, M.M., Carbon nanotubes agglomeration in reinforced composites: A review, AIMS Materials Science, Vol. 6(5), pp. 756-780, (2019)
 
[13] Bal, S., Samal, S.S., Carbon nanotube reinforced polymer composites - a state of the art, Bulletin of Materials Science, Vol. 30(4), pp. 379-386, (2007).
 
[14] Zhu, F., Park, C., and Jin Yun, G., An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage, Mechanics of advanced Materials and Structures, Vol. 28(3), pp. 295-307, (2021).
 
[15] Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W., and Zuppiroli, L., Mechanical properties of carbon nanotubes, Applied Physics A, Vol. 69(3), pp. 255-260, (1999).
 
[16] Pan, J., and Bian, L., Influence of agglomeration parameters on carbon nanotube composites, Acta Mechanica, Vol. 228(6), pp. 2207-2217, (2017).
 
[17] Ebrahimi, F., and Dabbagh, A., An analytical solution for static stability of multi-scale hybrid nanocomposite plates, Engineering with Computers, Vol. 37(1), pp. 545-559. (2021).
 
[18] Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., and Gao, H., The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,  Journal of  Engineering Material and Technology, Vol. 126(3), pp. 250-257, (2004).
 
[19] Bisheh, H., Rabczuk, T., Wu, N., Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells, Composites Part B: Engineering, Vol. 187, Article ID 107739, (2020).
 
[20] Haghgoo, M., Ansari, R., and Hassanzadeh-Aghdam, M.K., Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites, Composites Part B: Engineering, Vol. 167, pp. 728-735, (2019).
 
[21] Hosseinpour, K., Ghasemi, A.R., Agglomeration and aspect ratio effects on the long-term creep of carbon nanotubes/fiber/polymer composite cylindrical shells, Journal of Sandwich Structures and Materials, Vol. 23(4), pp. 1272-1291, (2021).
 
[22] Hassanzadeh-Aghdam, M.K., Ansari, R., and Darvizeh, A., Multi-stage micromechanical modeling of effective elastic properties of carbon fiber/carbon nanotube-reinforced polymer hybrid composites, Mechanics of Advanced Materials and Structures, Vol. 26(24), pp. 2047-2061, (2019).
 
[23] Godara, S.S., Mahato, P.K., Effect of interphase between CNT and polyimide on the elastic and piezoelectric properties of hybrid smart nano-composites, Materials Today: Proceedings, Vol. 21, pp. 1144-1148, (2020).
 
[24] Hasanzadeh, M., Ansari, R., Hassanzadeh-Aghdam, M.K., Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes, Mechanics of Materials, Vol. 129, pp. 63-79, (2019).
 
[25] Ansari, R., Hassanzadeh, M. K., Effects of regular and random distribution of silica nanoparticles on the thermo-elastic and viscoelastic properties of polymer nanocomposites-Micromechanics-based analysis, Modares Mechanical Engineering, Vol. 15(1), pp. 99-107, (2015). (in Persianفارسی )
 
[26] Ansari Khalkhali, R., Hassanzadeh Aghdam, M.K., Mashkor, A., Study on the percolation behavior of the mechanical properties of nanoparticle reinforced polymer nanocomposites using three-dimensional micromechanical modeling, Modares Mechanical Engineering, Vol. 15(6), pp. 376-382, (2015). (in Persianفارسی )
 
[27] Li, Z., Ye, J., Liu, L., Cai, H., He, W., Cai, G., and Wang, Y., Evaluation of piezoelectric and mechanical properties of the piezoelectric composites with local damages, Mechanics of Advanced Materials and Structures, Vol. 29(23), pp. 3429-3446. (2022).
 [28] Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, Vol. 21(5), pp. 571-574, (1973).
 
[29] Tassi, N., Bakkali, A., Fakri, N., Azrar, L., and Aljinaidi, A., Well conditioned mathematical modeling for homogenization of thermo-electro-mechanical behaviors of piezoelectric composites, Applied Mathematical Modelling, Vol. 99, pp. 276-293, (2021).  
 
[30] Quinsaat, J.E.Q., de Wild, T., Nüesch, F.A., Damjanovic, D., Krämer, R., Schürch, G., and Opris, D. M., Stretchable piezoelectric elastic composites for sensors and energy generators, Composites Part B: Engineering, Vol. 198, Article ID 108211, (2020).  
 
 
 
 
[31] Hooper, T.E., Roscow, J.I., Mathieson, A., Khanbareh, H., Goetzee-Barral, A.J., and Bell, A.J., High voltage coefficient piezoelectric materials and their applications, Journal of the European Ceramic Society, Vol. 41(13), pp. 6115-6129, (2021).
 
 
[32] Della, C.N., and Shu, D., The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix, Acta Materialia, Vol. 56(4), pp. 754-761, (2008).
 
[33] Pakam, N., and Arockiarajan, A., An analytical model for predicting the effective properties of magneto-electro-elastic (MEE) composites, Computational Materials Science, Vol. 65, pp. 19-28, (2012).
 
[34] Dunn, M.L., Taya, M., An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 443(1918), pp. 265-287, (1993).
 
[35] Li, K., Gao, X.L., and Roy, A.K., Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites, Mechanics of Advanced Materials and Structures, Vol. 13(4), pp. 317-328, (2006).
 
[36] Prashantha, K., Soulestin, J., Lacrampe, M.F., Krawczak, P., Dupin, G., and Claes, M., Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties, Composites Science and Technology, Vol. 69(11-12), pp. 1756-1763, (2009).
 
[37] Andrews, R., Jacques, D., Minot, M., and Rantell, T., Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromolecular Materials and Engineering, Vol. 287(6), pp. 395-403, (2002).