بررسی نرخ فرسایش ابزار فولاد تندبر حین تراشکاری فولاد 1045 تحت شرایط خنک کاری به وسیله مبرد R410a در مقایسه با سیال آب-صابون

نوع مقاله : علمی پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد ساوه، ساوه

2 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد ساوه، ساوه

3 دانشیار، گروه مهندسی مواد، دانشگاه آزاد اسلامی واحد ساوه، ساوه

چکیده

در این تحقیق با استفاده از مبرد R410a در خنک کاری لبه برنده ابزار و مقایسه آن با سیال سنتی آب صابون، عمر ابزار و میزان فرسایش لبه برنده ابزار بررسی شد. نرخ سایش ابزار فولاد تندبر (HSS) در براده برداری فولاد (ck45) 1045  در سرعت های برشی 15، 25، 40 و 55 متر بر دقیقه، عمق ­های براده برداری 5/0، 1 و 5/1 میلیمتر و مقادیر پیشروی 05/0، 12/0 و 2/0 میلیمتر بر دور در دو حالت خنک کاری سیال آب صابون و مبرد R410a بررسی شد. نتایج به ­دست آمده نشان می­ دهد که خنک­ کاری به ­وسیله مبرد R410a به ­علت قدرت سرمایش بالا و کنترل بهتر دمای محل برش نسبت به سیال آب صابون در فرآیند ماشینکاری، سبب کاهش میزان فرسایش ابزار گردیده و می ­تواند به ­عنوان یکی از سیالات مناسب خنک­ کاری به­ کار گرفته شود. بر اساس کمینه­ های مقدار فرسایش ابزار در شرایط مختلف، با استفاده از مبرد R410a می ­توان سرعت برشی را 60 درصد افزایش داد و از 25 به 40 متر بر دقیقه رساند. همچنین در بهینه ­ترین حالت میزان فرسایش ابزار تا 20 برابر بهبود می ­یابد و در سرعت برشی 40 بر دقیقه، عمق براده برداری 1 میلیمتر و مقدار پیشروی 05/0 میلیمتر بر دور، پس از گذشت 60 دقیقه از زمان براده برداری، از 400 به 20 میکرومتر کاهش می ­یابد.

کلیدواژه‌ها

موضوعات


  • Yildiz, Y., and Nalbant, M., A review of cryogenic cooling in machining processes, International Journal of Machine Tools and Manufacture, Vol. 48(9), pp. 947-964, (2008).

 

  • Rahman, M., and Senthil Kumar, A., Evaluation of minimal of lubricant in end milling, The International Journal of Advanced Manufacturing Technology, Vol. 18(4), pp. 235-241, (2001).

 

  • Adler, D.P., Hii, W.S., Michalek, D.J., and Sutherland, J.W., Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns, Machining Science and technology, Vol. 10(1), pp. 23-58, (2006).

 

  • Diniz, A.E., and Micaroni, R., Cutting conditions for finish turning process aiming: the use of dry cutting, International Journal of Machine Tools and Manufacture, Vol. 42(8), pp. 899-904, (2002).

 

  • Paul, S., and Chattopadhyay, A.B., The effect of cryogenic cooling on grinding forces, International Journal of Machine Tools and Manufacture, Vol. 36(1), pp. 63-72, (1996).

 

  • Paul, S., and Chattopadhyay, A.B., Environmentally conscious machining and grinding with cryogenic cooling, Machining Science and Technology, Vol 10(1), pp. 87-131, (2006).

 

  • Abukhshim, N.A., Mativenga, P.T., and Sheikh, M.A., Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools and Manufacture, Vol. 46(7-8), pp. 782-800, (2006).

 

  • Majumdar, P., Jayaramachandran, R., and Ganesan, S., Finite element analysis of temperature rise in metal cutting processes, Applied thermal engineering, Vol. 25(14-15), pp. 2152-2168, (2005).

 

  • Ahmed, M.I., Ismail, A.F., Abakr, Y.A., and Amin, A.N., Effectiveness of cryogenic machining with modified tool holder, Journal of materials processing technology, Vol. 185(1-3), pp. 91-96, (2007).

 

  • Hernández-González, L.W., Dumitrescu, L., Quesada-Estrada, A.M. and Reyes-Camareno, R., Cutting parameters determination in milling of AISI 1045 steel, Universidad y Sociedad, Vol. 12(6), pp. 207-214, (2020).

 

  • Hernández González, L.W., Seid Ahmed, Y., Pérez Rodríguez, R., Zambrano Robledo, P.D.C., and Guerrero Mata, M.P., Selection of machining parameters using a correlative study of cutting tool wear in high-speed turning of AISI 1045 steel, Journal of Manufacturing and Materials Processing, Vol. 2(4), pp. 66, (2018).

 

  • Shnfir, M., Olufayo, O.A., Jomaa, W., and Songmene, V., Machinability study of hardened 1045 steel when milling with ceramic cutting inserts, Materials, Vol. 12(23), pp. 3974, (2019).

 

  • Bartarya, G., and Choudhury, S.K., State of the art in hard turning, International Journal of Machine Tools and Manufacture, Vol. 53(1), pp. 1-14, (2012).

 

  • Chinchanikar, S., and Choudhury, S.K., Machining of hardened steel-experimental investigations, performance modeling and cooling techniques: a review, International Journal of Machine Tools and Manufacture, Vol. 89, pp. 95-109, (2015).

 

  • Krolczyk, G.M., Maruda, R.W., Krolczyk, J.B., Wojciechowski, S., Mia, M., Nieslony, P., and Budzik, G., Ecological trends in machining as a key factor in sustainable production–a review, Journal of Cleaner Production, Vol. 218, pp. 601-615, (2019).

 

  • Ajaja, J., Jomaa, W., Bocher, P., Chromik, R.R., Songmene, V., and Brochu, M., Hard turning multi-performance optimization for improving the surface integrity of 300M ultra-high strength steel, The International Journal of Advanced Manufacturing Technology, Vol. 104(1), pp. 141-157, (2019).

 

  • Li, B., Zhang, S., Yan, Z., and Zhang, J., Effect of edge hone radius on chip formation and its microstructural characterization in hard milling of AISI H13 steel, The International Journal of Advanced Manufacturing Technology, Vol. 97(1), pp. 305-318, (2018).

 

  • Cui, X., Jiao, F., Zhao, B., and Guo, J., A review of high-speed intermittent cutting of hardened steel, The International Journal of Advanced Manufacturing Technology, Vol. 93(9), pp. 3837-3846, (2017).

 

  • Muñoz-Escalona, P., Díaz, N., and Cassier, Z., Prediction of tool wear mechanisms in face milling AISI 1045 steel, Journal of Materials Engineering and Performance, Vol. 21(6), pp. 797-808, (2012).

 

  • Costa, D.M.D., Brito, T.G., de Paiva, A.P., Leme, R.C., and Balestrassi, P.P., A normal boundary intersection with multivariate mean square error approach for dry end milling process optimization of the AISI 1045 steel, Journal of Cleaner Production, Vol. 135, pp. 1658-1672, (2016).

 

  • Brito, T.G., Paiva, A.P., Paula, T.I., Dalosto, D.N., Ferreira, J.R., and Balestrassi, P.P., Optimization of AISI 1045 end milling using robust parameter design, The International Journal of Advanced Manufacturing Technology, Vol. 84(5), pp. 1185-1199, (2016).

 

  • Junior, A.S.A., Sales, W.F., da Silva, R.B., Costa, E.S., and Machado, Á.R., Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing, Journal of Cleaner Production, Vol. 156, pp. 635-647, (2017).

 

  • Iqbal, S.A., Mativenga, P.T., and Sheikh, M.A., Characterization of machining of AISI 1045 steel over a wide range of cutting speeds, Part 2: evaluation of flow stress models and interface friction distribution schemes, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 221(5), pp. 917-926, (2007).

 

  • Iqbal, S.A., Mativenga, P.T., and Sheikh, M.A., Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: Investigation of contact phenomena, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 221(5), pp. 909-916, (2007).

 

  • Iqbal, S.A., Mativenga, P.T., and Sheikh, M.A., Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel, International journal of machining and machinability of materials, Vol. 3(1-2), pp. 18-33, (2008).

 

  • Debnath, S., Reddy, M.M., and Yi, Q.S., Environmental friendly cutting fluids and cooling techniques in machining: a review, Journal of cleaner production, Vol. 83, pp. 33-47, (2014).

 

  • El-Hossainy, T.M., Tool wear monitoring under dry and wet machining, Materials and Manufacturing processes, Vol. 16(2), pp. 165-176, (2001).

 

  • Ghosh, S., and Rao, P.V., Application of sustainable techniques in metal cutting for enhanced machinability: a review, Journal of Cleaner Production, Vol. 100, pp. 17-34, (2015).

 

  • Lawal, S.A., Choudhury, I.A., and Nukman, Y., A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant, Journal of Cleaner Production, Vol. 41, pp. 210-221, (2013).

 

  • Fnides, M., Yallese, M.A., Khattabi, R., Mabrouki, T., and Girardin, F., Modeling and optimization of surface roughness and productivity thru RSM in face milling of AISI 1040 steel using coated carbide inserts, International Journal of Industrial Engineering Computations, Vol. 8(4), pp. 493-512, (2017).

 

  • Masmiati, N., and Sarhan, A.A., Optimizing cutting parameters in inclined end milling for minimum surface residual stress-Taguchi approach, Measurement, Vol. 60, pp. 267-275, (2015).

 

  • Masmiati, N., Sarhan, A.A., Hassan, M.A.N., and Hamdi, M., Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel, Measurement, Vol. 86, pp. 253-265, (2016).