مروری بر عملکرد، انواع و کاربردهای مواد فعال سطحی (سورفکتانت ها) در جریان سیالات چندفازی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران

2 استاد، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران

3 استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری، تهران

4 استاد، گروه بیوفیزیک ماده نرم، دانشگاه صنعتی دامشتارت، آلمان

چکیده

در این مقاله مواد فعال سطحی (سورفکتانت ها) و تأثیر آن بر جریان سیالات چند فازی مورد مطالعه قرار گرفته است. ابتدا نحوه عملکرد سورفکتانت ها بیان شده است. بدین منظور، تعاریف تنش سطحی و نحوه تغییر آن در حضور سورفکتانت ها بررسی شده است. همچنین، فیزیک توزیع سورفکتانت ها در جریان چندفازی و جذب و دفع آن در سطح مشترک گزارش شده است. تغییرات فیزیکی سطح مشترک دوفاز به دلیل حضور سورفکتانت ها از طریق تعادل نیروها و تغییر در تنش سطحی و تعریف اثر مارانگونی بررسی شده است. انواع سورفکتانت ها و خواص آن ها بیان شده است. در نهایت کاربردهای مهم سورفکتانت ها در صنعت و زندگی روزمره با جزئیات ذکر شده است. این بررسی نشان می دهد که سورفکتانت ها به عنوان یکی از عوامل موثر بر جریان چندفازی نیاز به مطالعه روز افزون دارد. شناخت بهتر این مواد می تواند در دستکاری و بهینه سازی کاربردهای دارای جریان سیال چندفازی بسیار مفید باشد. 

کلیدواژه‌ها


[1] Cui, Y., A computational fluid dynamics study of two-phase flows in the presence of surfactants, University of New Hampshire, Durham, England, (2011).
 
[2] Antonopoulou, E., Harlen, O. G., Rump, M., Segers, T., and Walkley, M. A., Effect of surfactants on jet break-up in drop-on-demand inkjet printing, Physics of Fluids, Vol. 33, No. 7, pp. 072112, (2021).
 
[3] Sanjeev, A., Jog, M. A., and Manglik, R. M., Computational simulation of surfactant-induced interfacial modification of droplet impact and heat transfer, in ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems, Orlando, FL, May 18-21, USA, (2008).
 
[4] Teng, C.-H., Chern, I-L., and Lai, M.-C., Simulating binary fluid-surfactant dynamics by a phase field model, Discrete and Continuous Dynamical Systems-B, Vol. 17, No. 4, pp. 1289-1307, (2012).
 
[5] Soligoa, G., Roccon, A., and Soldatia, A., Coalescence of surfactant-laden drops by Phase Field Method, Journal of Computational Physics, Vol. 376, pp. 1292-1311, (2019).
 
[6] Goodarzi, F. and Zendehboudi, S., Effects of salt and surfactant on interfacial characteristics of water/Oil systems: Molecular dynamic simulations and Dissipative Particle Dynamics, Industrial & Engineering Chemistry Research, Vol. 58, pp. 8817-8834, (2019).
 [7] Haghnegahdar, M., Boden, S., and Hampel, S., Investigation of surfactant effect on the bubble shape and mass transfer in a milli-channel using high-resolution microfocus X-ray imaging, International Journal of Multiphase Flow, Vol. 87, pp. 184-196, (2016).
 
[8] Antonopoulou, E., The role of surfactants in jet break-up for inkjet printing, PhD Thesis, Woodhouse, Leeds, United Kingdom, (2020).
 
[9] Theodorakis, P. E., Müller, E A., Crasterb, R. V., and Matar, O. K., Modelling the superspreading of surfactant-laden droplets with computer simulation, Soft Matter, Vol. 11, pp. 9254-9261, (2015).
 
[10] Tariq, A., Phase-Field simulation of surfactant adsorption onto flat and droplet interfaces, M.Sc. Thesis, Shanghai Jiao Tong University, Shanghai, China, (2012).
 
[11] Yulianti, K., Gunawan, A. Y., Soewono, E., and Mucharam, L., Effects of an insoluble surfactant on the deformation of a falling drop towards a solid surface, Journal of Computer Science & Computational Mathematics, Vol. 3, No. 1, pp. 7-12, (2013).
 
[12] Davea, N. and Joshi, T., A concise review on surfactants and its significance, International Journal of Applied Chemistry, Vol. 13, No. 3, pp. 663-672, (2017).
 
[13] Hasegawa, T., Karasawa, M., and Narumi, T., Modeling and measurement of the dynamic surface tension of surfactant solutions, J. Fluids Eng., Vol. 130, No. 8, pp. 081505, (2008).
 
[14] Ahmed, E., Breaking Down Surfactants: What they are, how they work, and their role in the pandemic, dispersa.ca, Sep. 25, (2020): https://www.dispersa.ca/blog/what-are-surfactants-and-how-do-they-work/.
 
[15] Mukherjee, S., Berghout, P., and Van den Akker, H. E. A., A lattice boltzmann approach to surfactant-laden emulsions, American Institute of Chemical Engineers Journals, Vol. 65, No. 2, pp. 811-828, (2019).
 
[16] Jin, F., Gupta, N. R., and Stebe, K. J., The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant, Physics of Fluids, Vol. 18, pp. 022103, (2006).
 
[17] Xu, J.-J., Li, Z., Lowengrub, J., and Zhao, H., A level-set method for interfacial flows with surfactant, Journal of Computational Physics, Vol. 212, pp 590-616, (2006).
 
[18] Herrada, M.A., Ponce-Torres, A., Rubio, M., Eggers, J., and Montanero, J.M., Stability and tip streaming of a surfactant-loaded drop in an extensional flow. Influence of surface viscosity, J. Fluid Mech., Vol. 934, pp. A26, (2022).
 
[19] Badmus, S. O., Amusa, H. K., Oyehan, T. A., and Saleh, T. A., Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques, Environmental Science and Pollution Research, Vol. 28, No. 44, pp. 62085–62104, (2021).
 
[20] Bazhlekov, I., Numerical simulation of drop coalescence in the presence of film soluble surfactant, AIP Conference Proceedings, Vol. 1487, pp. 351-359, (2012).
 
[21] Hayashi, K., Motoki, Y., van der Linden, M. J. A., Deen, N. G., Hosokawa, S., and Tomiyama, A., Single contaminated drops falling through stagnant liquid at low Reynolds Numbers, Fluids, Vol. 7, No. 2, pp. 55-78, (2021).
 
[22] Martin, D. W.  and Blanchette, F., Simulations of surfactant effects on the dynamics of coalescing drops and bubbles, Physics of Fluids, Vol. 27, pp. 012103, (2015).
 
[23] Young, Y.-N., Booty, M. R., Siegel, M., and Li, J., Influence of surfactant solubility on the deformation and breakup of a bubble or capillary jet in a viscous fluid, Physics of Fluids, Vol. 21, pp. 072105, (2009).
 
[24] Steinhausen, M., Numerical simulation of single rising bubbles influenced by soluble surfactant in the spherical and ellipsoidal regime, M.Sc. Thesis, Departement of Mathematics Mathematical Modelling and Analysis, Technical University Darmstadt, Darmstadt, Germany, (2018).
 
[25] Palssona, S., Siegel, M., and Tornberg, A.-K., Simulation and validation of surfactant-laden drops in two-dimensional Stokes flow, Journal of Computational Physics, Vol. 386, pp. 218-247, (2019).
 
[26] Soligo, G., Roccon, A., and Soldati, A., Deformation of clean and surfactant-laden droplets in shear flow, Meccanica, Vol. 55, pp. 371–386, (2020).
 
[27] Urbina-Villalba, G., An algorithm for emulsion stability simulations: Account of flocculation, coalescence, surfactant adsorption and the process of ostwald ripening, Int. J. Mol. Sci., Vol. 10, pp. 761–804, (2009).
 
[28] Prisle, N. L., Asmi, A., Topping, D., Partanen, A.-I., Romakkaniemi, S., Dal Maso, M., Kulmala, M., Laaksonen, A., Lehtinen, K. E. J., McFiggans, G., and Kokkola, H., Surfactant effects in global simulations of cloud droplet activation, Geophysical Research Letters, Vol. 39, pp. L05802, (2012).
 
[29] Das, B., Kumar, B., Begum, W., Bhattarai, A., Mondal, M. H., and Saha, B., Comprehensive review on applications of surfactants in vaccine formulation, therapeutic and cosmetic pharmacy and prevention of pulmonary failure due to covid‑19, Chemistry Africa, Vol. 5, pp. 459–480, (2022).
 
[30] Ahmed, E., Alveoil gas exchange, medizzy.com, Aug. 20, (2022), Available: https://medizzy.com/feed/5115715.
 
[31] Hao, Y., Jin, N., Wang, Q., Zhou, Y., Zhao, Y., Zhang, X., and Lü, H., Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor, RSC Adv., Vol. 10, pp. 14322-14330, (2020).
 
[32] Gao, G., Chen, F.-J., Zhou, L., Su, L., Xu, D., Xu, L., and Li, P., Control of lipid droplet fusion and growth by CIDE family proteins, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, Vol. 1862, No. 10, pp. 1197-1204, (2017).
 
[33] Whitby, C. P.  and Bahuon, F., Droplet fusion in oil-in-water pickering emulsions, Front. Chem., Vol. 6, pp. 213-227, (2018).
 
[34] Mazutis, L., Bareta, J. -C., and Griffiths, A. D., A fast and efficient microfluidic system for highly selective one-to-one droplet fusion, Lab Chip, Vol. 9, pp. 2665-2672, (2009).
 
[35] Lee, S. -W., Kwok, D. Y., and Laibinis, P. E., Chemical influences on adsorption-mediated self-propelled drop movement, Phys. Rev. E, Vol. 65, pp. 051602, (2002).
 
[36] Posocco, P., Perazzo, A., Preziosi, V., Laurini, E., Pricla, S., and Guido, S., Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations, RSC Adv., Vol. 6, pp. 4723-4729, (2016).
 
[37] Zhang, X., Wu, J. –y., and Niu, J., PCM-in-water emulsion for solar thermal applications: The effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics, Solar Energy Materials and Solar Cells, Vol. 147, pp. 211-224, (2016).
 
[38] Laurén, S., Evaluation of emulsion stability by interfacial rheology measurements, biolinscientific.com, Nov. 10, (2020): https://www.biolinscientific.com/blog/evaluation-of-emulsion-stability-by-interfacial-rheology measurements.
 
[39] Yu, X., Jiang, N., Miao, X., Zong, R, Sheng, Y., Li, C., and Lu, S., Formation of stable aqueous foams on the ethanol layer: Synergistic stabilization of fluorosurfactant and polymers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 591, pp. 124545, (2020).
 
[40] Gupta, D. Sarker, B., Thadikaran, K., John, V., Maldarelli, C., and John, G., Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals, Science Advances, Vol. 1, No. 5, pp. e1400265., (2015).
 
[41] Kjeilen-Eilertsen, G., Jersak, J. M., and Westerlund, S., Developing Treatment Products for Increased Microbial Degradation of Petroleum Oil Spills across Open-Water Surfaces, Offshore Technology Conference, Houston, Texas, USA, 7–9 Feb. (2011).
 
[42] Lai, M. -C., Tseng, Y. –H., and Huang, H., Numerical simulation of moving contact lines with surfactant by immersed boundary method, Commun. Comput. Phys., Vol. 8, No. 4, pp. 735-757 (2010).
 
[43] Druetta, P. and Picchioni, F., Simulation of surfactant oil recovery processes and the role of phase behaviour parameters, Energies, Vol. 12, pp. 983-1013, (2019).
 
[44] Adila, A. S., Al-Shalabi, E. W., and Alameri, W., Geochemical investigation of hybrid Surfactant and low salinity/engineered water injections in carbonates: A numerical study, Journal of Petroleum Science and Engineering, Vol. 208, pp. 109367, (2022).
 
[45] Sabirgalieva, N., Skartlien, R., and Rojas-Solorzano, L., DPD simulation of surface wettability alteration by added water-soluble surfactant in the presence of indigenous oil-soluble surfactant, Chemical Engineering Transactions, Vol. 57, pp. 1489-1494, (2022).
 
[46] Ahmadi, M., and Chen, Z., Spotlight onto surfactant–steam–bitumen interfacial behavior via molecular dynamics simulation, Scientific Reports, Vol. 11, pp. 19660, (2021).
 
[47] Shah, R. and Calderon, J., Developments in green surfactants for enhanced oil recovery march, aocs.org, Mar. 10, (2021): https://www.aocs.org/stay-informed/inform-magazine/featured-articles/developments-in-green-surfactants-for-enhanced-oil-recovery-march-2021?SSO=True.
 
[48] Theodorakis, P. E., Smith, E. R., Craster, R.V., Müller, E. A., and Matar, O. K., Molecular dynamics simulation of the superspreading of surfactant-laden droplets. A review, Fluids, Vol. 4, No. 176, pp. 1-23, (2019).
 
[49] CHS Agronomy, Get to know adjuvants: Surfactants, inthefurrow.com, Apr. 21, (2021): https://inthefurrow.com/2021/04/21/adjuvants-surfactants/.