تحلیل پارامتریک و ترمودینامیکی تولید برق در ایستگاه ‏های تقلیل فشار گاز با بهره ‏گیری از توربو اکسپندرهای مبتنی بر انرژی زمین گرمایی

نوع مقاله : علمی پژوهشی

نویسندگان

1 پژوهشگر، دانشگاه صنعتی مالک اشتر، پژوهشکده علوم و فناوری دفاعی شمالغرب

2 کارشناس ارشد، مهندسی شیمی، دانشگاه پیام نور، تهران

چکیده

توجه به مخاطرات زیست محیطی انرژی های سنتی به ویژه پدیده گرمایش زمین ناشی از انتشار و متمرکز شدن گازهای گلخانه‏ ای از اصلی ترین دلایل توجه به انرژی‏ های نو است و دولت ‏ها را بر آن داشته تا بهره‏ مندی از منـابع جدید انرژی را بـا جـدیت در دسـتور کـار قـرار داده و بـرای آن برنامـه ‏ریـزی کننـد. از طرفی با توجه به جایگزینی سوخت های فسیلی توسط انرژی‏ های تجدید پذیر و روش های نوین تولید برق، شایسته است که پتانسیل های موجود همانند اتلاف انرژی ناشی از تقلیل فشار گاز در ایستگاه های تقلیل گاز شهری مورد نظر و بررسی قرار گیرد. از این رو در مقاله حاضر سعی شده است تا با استفاده از یک توربو اکسپندر در یک ایستگاه تقلیل فشار گاز شهری، به تولید انرژی الکتریسیته پرداخته شود. گاز ورودی به این توربو اکسپندر نیز توسط انرژی زمین گرمایی پیش گرم می شود تا توان تولید کار در آن افزایش یابد. نتایج حاکی از آن است که ایده ‏آل ‏ترین راندمان آیزنتروپیک (برابر با 90 %)، در دمای ورودی توربواکسپندر برابر با 80 درجه سانتی گراد و میزان پیش ‏گرمایش برابر با kJ/kg 5/186 اتفاق می‏افتد. همچنین افزایش میزان پیش گرمایش گاز طبیعی سبب افزایش دمای توربین انبساطی شده و در نتیجه توان تولیدی افزایش می ‏یابد. 

کلیدواژه‌ها

موضوعات


[1] Alshehry, A.S., Belloumi, M., Energy consumption, carbon dioxide emissions and economic growth: the case of Saudi Arabia, Renew Sustain Energy, Vol. 41, pp. 237–47, (2015).
 
[2] He, W., Wang, Y., Shaheed, M.H., Energy and thermodynamic analysis of power generation using a natural salinity gradient based pressure retarded osmosis process, Desalination; Vol. 350, pp. 86–94, (2014).
 
[3] Weitemeyer, S., Kleinhans, D., Vogt, T., Agert, C., Integration of renewable energy sources in future power systems: the role of storage, Renew Energy, Vol. 75, pp. 14–20, (2015).
 
[4] Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Ostergaard PA, Möller B, et al. Smart energy systems for coherent 100% renewable energy and transport solutions, Appl Energy, Vol. 145, pp. 139–54, (2015).
 
[5] Quan H, Srinivasan D, Kham badkone AM, Khosravi A. Computational frame work for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources, Appl Energy; Vol. 152, pp. 71–82, (2015).
 
[6] Howard, C., Oosthuizen, P., Peppley, B., An investigation of the performance of a hybrid turbo expander-fuel cell system for power recovery at natural gas pressure reduction stations, Appl. Therm. Eng, Vol. 31, pp. 2165–2170, (2011).
 
[7] Lai, T., Guo, Y., Zhao, Q., Wang, Y.,  Zhang, X., Hou, Y., Numerical and experimental studies on stability of cryogenic turbo-expander with protuberant foil gas bearings, Cryogenics, Vol. 96, pp. 62-74, (2018).
[8] Zhou, K., Li, S., Zhao, K., Lin, H., Zhang, Z., Chen, L., Hou, Y., Chen, S., Efficiency control of the cooling-down process of a cryogenic helium turbo-expander for a 2 t/d hydrogen liquefier, International Journal of Hydrogen Energy, (2022).
 
[9] Konukman, S., Akman, U., Flexibility and operability analysis of a HEN integrated natural as expander plant, Chem. Eng. Sci, Vol. 60, pp. 7057–7074, (2005).
 
[10] Tripathy, S., Jayanarayan, J., Roul, K.M., Energy and exergy analysis for biomass co-coal fuel based thermal power plant, Int. J. Res. Eng. Technol, Vol. 3, pp. 54–59, (2015).
 
 [11] Zehtabian, N., Saffar-Avval, M., Feasibility study of turbo expander installation in city gas tation, In: Proceeding of the 25th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, Perugia, Italy, (2012).
 
[12] Daneshi, H.,  Khorashadi Zadeh, H., Lotfjou Choobari, A., “Turbo expander as a distributed generator”, Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–7, (2008).
 
[13] Taleshian Jelodar, M., Rastegar, H., Askarian Abyaneh, H., “Modeling turbo-expander systems”, Simulation, Vol. 89, pp. 234-248, (2013).
 
[14] Taleshian Jelodar, M., Rastegar, H., Pichan, M., “Voltage improvement using a new control strategy for turbo expander driving systems”, Electrical Power and Energy Systems, Vol. 64, pp. 1176–1184, (2015).
 
[15] Taleshian Jelodar, M., Rastegar, H., Pichan, M., “Turbo expander system behavior improvement using an adaptive fuzzy PID controller”, AUT J. Model. Simul. Vol. 49, pp. 23-32, (2017).
 
[16] Pozivil, J., Use of expansion turbines in natural gas pressure reduction stations, Acta Montanistica Slovaca, Vol. 9, pp. 258-260, (2009).
 
[17] Kowala, D., Using the gas pressure potential for electricity generation at Pressure Reduction Stations, GERG Academic Network Event, Brussels, (2007).