بررسی ایده پرتابگرهای دوطبقه تا مدار (TSTO)

نوع مقاله : مقاله ترویجی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی سیستم‌های فضایی، دانشکده مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استادیار، گروه مهندسی سیستم‌های فضایی، دانشکده مهندسی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

به منظور تحقق توسعه و بهره‌برداری از فضا، نیاز است که سیستم‌های حمل و نقل فضایی کم‌هزینه توسعه یابند. توسعه سیستم‌هایی که به طور کامل قابلیت استفاده مجدد یا تا حدی دارای این قابلیت باشند، از دهه 1960 تاکنون حوزه مطالعاتی گسترده‌ای را در برداشته است. این نوع سامانه‌ها در دو گروه عمده SSTO و TSTO جای می‌گیرند. پرتابگر TSTO نسبت به SSTO الزامات کمتری دارد، به دلیل آنکه مسئولیت دستیابی به مأموریتی موفقیت‌آمیز در هر دو طبقه تقسیم خواهد شد و لذا جرم خشک مداری طبقه دوم TSTO در مقایسه با SSTO برای رساندن محموله‌ای با وزن مشابه کاهش یافته است. در این مقاله، ابتدا پرتابگر TSTO معرفی می‌شود؛ سپس نحوه اجرای مأموریت توسط این پرتابگر شرح می‌گردد. در ادامه زیرسیستم‌های پایه و اصولی این پرتابگر معرفی و توضیح مختصری در رابطه با هریک داده می‌شود. نهایتاً برخی از اصلی‌ترین نمونه‌های طراحی‌شده این نوع پرتابگر را نام برده و مشخصه‌ای در رابطه با هر یک ارائه می‌گردد.

کلیدواژه‌ها

موضوعات


[۱] اسحاق‌نیا, حانیه. طراحی بهینه چندموضوعی پرتابگر دوطبقه با پیشرانش غیرتوربوپمپی. پایان‌نامه کارشناسی‌ارشد, دانشگاه
صنعتی مالک اشتر, 1399.
[2] Zhang, Hongwen, Guo, Jian, Xu, Yingshan, Du, Bin, Wang, Yongshen, and She, Wenxue. Research on tsto reusable launch vehicle (rlv) powered by turbo-aided rbcc engine. in 21st AIAA International Space Planes and Hypersonics Technologies Conference, p. 2372, 2017.
[3] Jacob, Dieter, Sachs, Gottfried, and Wagner, Siegfried. Basic Research and Technologies for Two-stage-to-orbit Vehicles: Final Report of the Collaborative Research Centres 253, 255 and 259. Wiley Online Library, 2005.
[4] Zhou, Jianxing, Lu, Hong, Zhang, Haocheng, Zhao, Lingbo, Chen, Jingmin, and Zheng, Riheng. A preliminary research on a two-stage-to-orbit vehicle with airbreathing pre-cooled hypersonic engines. in 21st AIAA International Space Planes and Hypersonics Technologies Conference, p. 2343, 2017.
[5] Tomioka, Sadatake, Kubo, Takahiro, Sakuranaka, Noboru, and Tani, Koichiro. Performance of a RBCC engine in rocket-operation. Transactions of the Japan society for aeronautical and space sciences, Aerospace Technology Japan, 10(ists28):Pa_63–Pa_69, 2012.
[6] Zhou, Jianxing, Lu, Hong, Zhang, Haocheng, Zhao, Lingbo, Chen, Jingmin, and Zheng, Riheng. A preliminary research on a two-stage-to-orbit vehicle with airbreathing pre-cooled hypersonic engines. in 21st AIAA International Space Planes and Hypersonics Technologies Conference, p. 2343, 2017.
[7] El-Sayed, Ahmed and Emeara, Mohamed. Aero-engines intake: A review and case study. Journal of Robotics and Mechanical Engineering Research, 1:35–42, 04 2016.
[8] Glass, David. Ceramic matrix composite (cmc) thermal protection systems (tps) and hot structures for hypersonic vehicles. in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2682, 2008.
[9] Dhawan, Suvriti, Vishal, Mohit, and Taploo, Anmol. Thermal protection for a re-entry vehicle using heat ablation process. International Journal of Science and Research (IJSR), 4:1293 – 2095, 12 2015.
[10] Venkatapathy, Ethiraj, Szalai, Christine E, Laub, Bernard, Hwang, Helen H, Conley, Joseph L, Arnold, James, and ARC, NASA. Thermal protection system technologies for enabling future sample return missions. White paper submitted to the Planetary Science Decadal Survey, National Research Council, Washington, DC, 2009.
[11] Sippel, M, Stappert, S, Bussler, L, and Forbes-Spyratos, S. Technical progress of multiple-mission reusable launch vehicle spaceliner, 2018.
[12] Sippel, Martin, Trivailo, Olga, Bussler, Leonid, Lipp, Sarah, and Valluchi, Cecilia. Evolution of the spaceliner towards a reusable tsto-launcher. 2016.
[13] Kothari, Ajay, Livingston, John, Tarpley, Christopher, Raghavan, Venkatraman, Bowcutt, Kevin, and Smith, Thomas. A reusable, rocket and airbreathing combined cycle hypersonic vehicle design for access-to-space. in AIAA SPACE 2010 Conference & Exposition, p. 8905, 2006.
[14] Hellman, Barry M, Bradford, John E, St. Germain, Brad D, and Feld, Kevin. Two stage to orbit conceptual vehicle designs using the sabre engine. in AIAA SPACE 2016, p. 5320. 2016.
[15] Eklund, D. Quicksat: a two stage to orbit reusable launch vehicle utilizing air breathing propulsion for responsive space access. in Space 2004 Conference and Exhibit, p. 5950, 2004.
[16] Fujikawa, Takahiro, Tsuchiya, Takeshi, and Tomioka, Sadatake. Multidisciplinary design optimization of a twostage-to-orbit reusable launch vehicle with ethanol-fueled rocket-based combined cycle engines. Transactions of the Japan Society for Aeronautical and Space Sciences, 60(5):265–275, 2017.
[17] Brevault, Loic, Balesdent, Mathieu, and Hebbal, Ali. Multi-objective multidisciplinary design optimization approach for partially reusable launch vehicle design. Journal of Spacecraft and Rockets, 57(2):373–390, 2020.
[18] Balesdent, Mathieu, Brevault, Loic, Paluch, Bernard, Wuilbercq, Romain, Subra, Naïr, Thépot, Rémi, and de Mirand, Antoine Patureau. Design and optimization of glide-back reusable launch vehicle architectures. in EUCASS 2019, 2019.
[19] Corp, Space Exploration Technologies. Falcon user’s guide, 2019.
[20] Gong, Chunlin, Chen, Bin, and Gu, Liangxian. Design and optimization of RBCC powered suborbital reusable launch vehicle. in 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2361, 2014.
[21] Mehta, Unmeel B, Aftosmis, Michael J, Bowles, Jeffrey V, and Pandya, Shishir A. Skylon aerodynamics and sabre plumes. in 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 3605, 2015.
[22] Bhavana, Y, Mani Shankar, N, and Prarthana, BK. Reusable launch vehicles: Evolution redefined. Journal of Aeronautics & Aerospace Engineering, 2(2):1–5, 2013.