بررسی رفتاری ابرشاره‌ هلیم مایع و کاربرد آن در مهندسی مکانیک

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 عضو هیئت علمی گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

دستیابی به بالاترین بازدهی در سیستم‌های سیالاتی نظیر نیروگاه‌ها، پمپ‌ها، مبدل‌‌ها، هواپیما و فضاپیماها تحول شکرفی در علم مکانیک سیالات ایجاد خواهد کرد. از طرف دیگر، لزجت و اتلاف حرارتی دو عامل اصلی در کاهش کارایی انواع سیستم‌های تبرید، پمپ‌ها، صنایع هوافضایی و مبدل‌های حرارتی هستند. به منظور دست‌یابی به این آرزو، سیالی که ضریب انتقال حرارت بالایی داشته و اثر لزجت در آن ناچیز باشد می‌تواند بسیار نقش‌آفرین باشد که این سیال به عنوان ابرسیال یا ابرشاره شناخته شده است. هدف از تحقیق پیشرو این است که ویژگی‌های سیالات ابرشاره، توانایی‌ها و پتانسل‌های آن‌ و پیشرفت‌های قابل تصور برای سیستم‌های مکانیکی را مورد بحث و بررسی قرار دهد. از آنجایی که هلیم مایع دارای خاصیت ابرشارگی است به طوری که دارای ضریب انتقال حرارت بالایی بوده و اثرات لزجت در آن تقریباً صفر است لذا ابتدا به بررسی خاصیت ابرشارگی گاز هلیم و کاربردهای قابل تصور برای آن پرداخته و سپس کاربردها و پتانسیل‌های موجود بیان خواهد شد.

کلیدواژه‌ها

موضوعات


[1] Janssen, PJC. letter extract, read by m. mathieu. Comptes Rendue Académie des Sciences (Paris), 67:494, 1868.
[2] Kresin, Vladimir Z and Wolf, Stuart A. Fundamentals of superconductivity. Springer Science & Business Media, 2013.
[3] Barenghi, Carlo F. Introduction to superfluid vortices and turbulence. in Quantized vortex dynamics and superfluid turbulence, pp. 3–14. Springer Berlin Heidelberg, sep 2001.
[4] Wang, B and Gan, ZH. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 61:43– 70, aug 2013.
[5] Kapitza, Pyotr. Viscosity of liquid helium below the λpoint. Nature, 141(3558):74–74, 1938
[6] Corcovilos, Theodore Allen. Fluid phase thermodynamics: I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas. Ph.D. thesis, California Institute of Technology, 2008.
[7] Schmitt, Andreas. Introduction to superfluidity: Fieldtheoretical approach and applications. Lecture Notes in Physics, 888:1–163, 2015.
[8] London, Fritz. The λ-phenomenon of liquid helium and the bose-einstein degeneracy. Nature, 141(3571):643–644, 1938.
[9] Balibar, Sebastien. Laszlo tisza and the two-fluid model of superfluidity. Comptes Rendus Physique, 18(9-10):586– 591, 2017.
[10] Landau, L. Theory of the superfluidity of helium ii. Physical Review, 60(4):356, 1941.
[11] Eyring, Henry. Superfluids. volume ii: macroscopic theory of superfluid helium, 1955.
[12] Baym, Gordon, Pethick, Christopher, and Pines, David. Superfluidity in neutron stars. Nature, 224(5220):673–674, 1969.
[13] Reid, RC, Prausnitz, JM, and Sherwood, TK. The properties of gases and liquids, 3rd edn mcgraw-hill. New York, 1977.
[14] Weisend, JG. Handbook of cryogenic engineering. 1998.
[15] Peng, Feng, Sun, Ying, Pickard, Chris J, Needs, Richard J, Wu, Qiang, and Ma, Yanming. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Physical review letters, 119(10):107001, 2017.
[16] Lerario, Giovanni, Fieramosca, Antonio, Barachati, Fábio, Ballarini, Dario, Daskalakis, Konstantinos S, Dominici, Lorenzo, De Giorgi, Milena, Maier, Stefan A, Gigli, Giuseppe, Kéna-Cohen, Stéphane, et al. Roomtemperature superfluidity in a polariton condensate. Nature Physics, 13(9):837–841, 2017.
[17] Kürti, N, Rollin, BV, and Simon, F. Preliminary experiments on temperature equilibria at very low temperatures. Physica, 3(1-4):266–274, 1936.
[18] Keesom, WH and Saris, BF. Further measurements on the heat conductivity of liquid helium ii. Physica, 7(3):241– 252, 1940.
[19] Norozi derazkolai, Farshad and Zomorodian, Mohammad Ebrahem. Investigation of Liquid Helium Properties and Superconductivity. Ph.D. thesis, 1997.
[20] Reid, RC, Prausnitz, JM, and Sherwood, TK. The properties of gases and liquids, 3rd edn mcgraw-hill. New York, 1977.
[21] Purushothaman, Sivaji. Superfluid helium and cryogenic noble gases as stopping media for ion catchers. University Library Groningen][Host], 2008.
[22] Mirsharifi, S and Pakpour, F. Superconductivity Study in Liquid Helium-4 Using the Nonlinear Schrödinger Equation. Ph.D. thesis, Arak University of Technology (in Persian ,(ffffffffff 2017.
[23] Koh, Shun-ichiro. Nonclassical rotational behavior at the vicinity of the λ point. Physical Review B, 74(5):054501, 2006.
[24] Kramer, David. Erratic helium prices create research havoc. Physics today, 70(1):26, 2017.
[25] Annett, James F. Superconductivity, Superfluids and Condensates. Ph.D. thesis, 2004.
[26] Donnelly, Russell J. HELIUM FOUNTAIN photographed in the 1970s. 1995.
[27] Peshkov, V. Determination of the velocity of propagation of the second sound in helium ii. J. Phys. USSR, 10(1):389– 398, 1946.
[28] London, Fritz. Superfluids: Macroscopic theory of superconductivity. v. 2 Macrosopic theory of superfluid helium, vol. 1. Dover Publications, 1961.
[29] Shapiro, Kenneth A and Rudnick, Isadore. Experimental determination of the fourth sound velocity in helium ii. Physical Review, 137(5A):A1383, 1965.
[30] Sajjadi, Seyed, Buelna, Xavier, and Eloranta, Jussi. Application of time-resolved shadowgraph imaging and computer analysis to study micrometer-scale response of superfluid helium. Review of Scientific Instruments, 89(1):013102, 2018.
[31] Feynman, RP, Leighton, RB, Sands, M, and Treiman, SB. The Feynman Lectures on Physics Mainly Electromagnetism and Matter. 1963.
[32] Harris, Glen I, Baker, Christopher, Sachkou, Yauhen, Duan, Zhenglu, Harris, G I, Mcauslan, D L, Baker, C, Sachkou, Y, Sheridan, E, Duan, Z, and Bowen, W P. Optomechanics with Superfluid Helium-4. in 2015 Conference on Lasers and Electro-Optics (CLEO), pp. 1–2, 2015.
[33] Minowa, Yosuke, Oguni, Yuya, and Ashida, Masaaki. Fabrication of semiconductor microspheres with laser ablation in superfluid helium. in Optical Manipulation Conference, vol. 10252, p. 102520N. International Society for Optics and Photonics, 2017.
[34] Bruening, Oliver Sim, Potter, K, Rossi, L, Gröbner, Oswald, Taylor, T, Linnecar, Trevor Paul R, Tsesmelis, E, Schindl, Karlheinz, Weisse, E, Cappi, R, et al. Lhc luminosity and energy upgrade: A feasibility study. tech. rep., 2002.
[35] Kumar, A, Nakai, H, Nakanishi, K, Shimizu, H, Kojima, Y, Hara, K, and Honma, T. Performance analysis for 2k heat exchanger for superfluid cryogenic system at kek. in IOP Conference Series: Materials Science and Engineering, vol. 502, p. 012051. IOP Publishing, 2019.
[36] Rousset, B and Millet, F. Evaluation of superfluid helium cooling schemes and application for hl-lhc recombination dipole d2. Cryogenics, 95:36–46, 2018.
[37] Ueresin, C, Decker, L, and Treite, P. Modeling and commissioning of a cold compressor string for the superfluid cryogenic plant at fermilab’s cryo-module test facility. Phys. Procedia, 67:282–287, 2015.
[38] Claudet, G, Disdier, F, Lebrun, Ph, Weymuth, P, and Morpurgo, M. Preliminary study of a superfluid helium cryogenic system for the large hadron collider. tech. rep., CM-P00063498, 1985.
[39] Gondrand, C, Durand, F, Delcayre, F, Crispel, S, and Baguer, GM Gistau. Overview of air liquide refrigeration systems between 1.8 k and 200 k. in AIP Conference Proceedings, vol. 1573, pp. 949–956. American Institute of Physics, 2014.
[40] Claudet, Gérard and Aymar, Robert. Tore supra and he ii cooling of large high field magnets. in Advances in cryogenic engineering, pp. 55–67. Springer, 1990.
[41] Jahromi, Amir E and Miller, Franklin K. Development of a proof of concept low temperature 4he superfluid magnetic pump. Cryogenics, 82:68–82, 2017.
[42] Jahromi, Amir E and Miller, Franklin K. Novel 4he circulator for cooling of large space superconducting magnets. Journal of Thermophysics and Heat Transfer, 30(3):553– 557, 2016.
[43] Jahromi, Amir Eshraghniaye, Miller, Franklin, and Nellis, Gregory. Modeling and development of a superfluid magnetic pump with no moving parts. in AIP Conference Proceedings, vol. 1434, pp. 223–230. American Institute of Physics, 2012.
[44] Jahromi, Amir E and Miller, Franklin K. A sub-kelvin superfluid pulse tube refrigerator driven by paramagnetic fountain effect pump. Cryogenics, 62:202–205, 2014.
[45] Castillo, L De, Frossati, G, Lacaze, A, and Thoulouze, D. Improved heat exchange in dilution refrigerators by use of continuous plastic exchangers. preprint presented at LT13, Boulder, Colorado, 1972.
[46] Patel, AB and Brisson, JG. Design, construction, and performance of plastic heat exchangers for sub-kelvin use. Cryogenics, 40(2):91–98, 2000.
[47] Phillips, C and Brisson, JG. Preliminary experimental results using a three-stage superfluid stirling refrigerator. in Cryocoolers 12, pp. 681–686. Springer, 2003.