ساخت افزایشی و چاپ سه‌بعدی زیستی

نوع مقاله : علمی ترویجی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده مهندسی مکانیک و مواد، دانشگاه صنعتی بیرجند، بیرجند

2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه بیرجند، بیرجند

چکیده

ساخت افزودنی که به‌عنوان چاپ سه‌بعدی شناخته شده است، در بسیاری از زمینه‌ها مانند صنایع هوافضا، خودروسازی، زیست‌پزشکی، هنر دیجیتال، طراحی معماری و غیره نوآوری‌های اساسی را به‌دنبال داشته است. پیشرفت‌های اخیر چاپ سه‌بعدی استفاده از مواد زیست‌سازگار، سلول‌ها و اجزای پشتیبان را برای ایجاد بافت‌های پیچیده عملکردی سه‌بعدی محیا کرده است. تلاش‌های مهندسان بافت برای ایجاد ساختارهای با تقلید از ویژگی‌های بافت‌های بدن، باعث توسعه روشی نوین تحت عنوان چاپ سه‌بعدی زیستی شده است. در این روش به کمک رایانه و چاپگر سه‌بعدی توده‌های سلولی و همچنین بستر رشد در مکان دقیق از پیش طراحی شده به‌صورت لایه‌لایه روی هم قرار می‌گیرند. با توجه به پیشرفت‌های حاصل در این زمینه‌‌، این فناوری توانایی ساخت اعضای بدن و همچنین ساخت داربست‌های زیستی جهت کشت سلول زنده، را خواهد داشت. در این تحقیق مروری بر روش‌های ساخت افزایشی، روش‌های چاپ سه‌بعدی زیستی و مواد زیستی و انواع آن شده است.

کلیدواژه‌ها

موضوعات


[1] Shafranek, Ryan T, Millik, Siyami C, Smith, Patrick T, Lee, Chang-Uk, Boydston, Andrew J, and Nelson, Alshakim. Stimuli-responsive materials in additive manufacturing. Progress in Polymer Science, 2019.
[2] Park, Jisun, Lee, Sang Jin, Chung, Solchan, Lee, Jun Hee, Kim, Wan Doo, Lee, Jae Young, and Park, Su A. Cellladen 3d bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation. Materials Science and Engineering: C, 71:678–684, 2017.
[3] Sercombe, Timothy B, Xu, Xiaoxue, Challis, VJ, Green, Richard, Yue, Sheng, Zhang, Ziyu, and Lee, Peter D. Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting. Materials & Design, 67:501–508, 2015.
[4] Soufivand, Anahita Ahmadi, Abolfathi, Nabiollah, Hashemi, Seyyed Ataollah, and Lee, Sang Jin. Prediction of mechanical behavior of 3d bioprinted tissue-engineered scaffolds using finite element method (fem) analysis. Available at SSRN 3431851, 2019.
[5] Kadry, Hossam, Wadnap, Soham, Xu, Changxue, and Ahsan, Fakhrul. Digital light processing (dlp) 3d-printing technology and photoreactive polymers in fabrication of modified-release tablets. European Journal of Pharmaceutical Sciences, 135:60–67, 2019.
[6] Ngo, Tuan D, Kashani, Alireza, Imbalzano, Gabriele, Nguyen, Kate TQ, and Hui, David. Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172–196, 2018.
[7] Mu, Quanyi, Wang, Lei, Dunn, Conner K, Kuang, Xiao, Duan, Feng, Zhang, Zhong, Qi, H Jerry, and Wang, Tiejun. Digital light processing 3d printing of conductive complex structures. Additive Manufacturing, 18:74–83, 2017.
[8] Rider, Patrick, Kačarević, Željka Perić, Alkildani, Said, Retnasingh, Sujith, and Barbeck, Mike. Bioprinting of tissue engineering scaffolds. Journal of tissue engineering, 9:2041731418802090, 2018.
[9] Chung, Johnson HY, Kade, Juliane, Jeiranikhameneh, Ali, Yue, Zhilian, Mukherjee, Payal, and Wallace, Gordon G. A bioprinting printing approach to regenerate cartilage for microtia treatment. Bioprinting, p. e00031, 2018.
[10] Lee, Jung-Seob, Kim, Byoung Soo, Seo, Donghwan, Park, Jeong Hun, and Cho, Dong-Woo. Three-dimensional cell printing of large-volume tissues: Application to ear regeneration. Tissue Engineering Part C: Methods, 23(3):136– 145, 2017.
[11] Jeon, Byoungjun, Lee, Chiwon, Kim, Myungjoon, Choi, Tae Hyun, Kim, Sungwan, and Kim, Sukwha. Fabrication of three-dimensional scan-to-print ear model for microtia reconstruction. journal of surgical research, 206(2):490– 497, 2016.
[12] Zopf, David A, Mitsak, Anna G, Flanagan, Colleen L, Wheeler, Matthew, Green, Glenn E, and Hollister, Scott J. Computer aided–designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngology–Head and Neck Surgery, 152(1):57– 62, 2015.
[13] Norman, James, Madurawe, Rapti D, Moore, Christine MV, Khan, Mansoor A, and Khairuzzaman, Akm. A new chapter in pharmaceutical manufacturing: 3d-printed drug products. Advanced drug delivery reviews, 108:39–50, 2017.
[14] Ventola, C Lee. Medical applications for 3d printing: current and projected uses. Pharmacy and Therapeutics, 39(10):704, 2014.
[15] Maulvi, Furqan A, Shah, Manthal J, Solanki, Bosky S, Patel, Akanksha S, Soni, Tejal G, and Shah, Dinesh O. Application of 3d printing technology in the development of novel drug delivery systems. Int J Drug Dev & Res, 9(1):44–9, 2017.
[16] Economidou, Sophia N, Pere, Cristiane Patricia Pissinato, Reid, Andrew, Uddin, Md Jasim, Windmill, James FC, Lamprou, Dimitrios A, and Douroumis, Dennis. 3d printed microneedle patches using stereolithography (sla) for intradermal insulin delivery. Materials Science and Engineering: C, 102:743–755, 2019.
[17] Javidrad, F and Pourmoayed, AR. Contour curve reconstruction from cloud data for rapid prototyping. Robotics and Computer-Integrated Manufacturing, 27(2):397–404, 2011.
[18] Parandoush, Pedram and Lin, Dong. A review on additive manufacturing of polymer-fiber composites. Composite Structures, 182:36–53, 2017.
[19] Wang, Jie, Goyanes, Alvaro, Gaisford, Simon, and Basit, Abdul W. Stereolithographic (sla) 3d printing of oral modified-release dosage forms. International journal of pharmaceutics, 503(1-2):207–212, 2016.
[20] Alhnan, Mohamed A, Okwuosa, Tochukwu C, Sadia, Muzna, Wan, Ka-Wai, Ahmed, Waqar, and Arafat, Basel. Emergence of 3d printed dosage forms: opportunities and challenges. Pharmaceutical research, 33(8):1817–1832, 2016.
[21] Yaman, Ulas, Dolen, Melik, Dilberoglu, Ugur M, and Gharehpapagh, Bahar. A new method for generating image projections in dlp-type 3d printer systems. Procedia Manufacturing, 11:490–500, 2017.
[22] Varghese, Giftymol, Moral, Mónica, Castro-García, Miguel, López-López, Juan José, Marín-Rueda, Juan Ramón, Yagüe-Alcaraz, Vicente, Hernández-Afonso, Lorena, Ruiz-Morales, Juan Carlos, and Canales-Vázquez, Jesus. Fabrication and characterisation of ceramics via low-cost dlp 3d printing. Boletín de la Sociedad Española de Cerámica y Vidrio, 57(1):9–18, 2018.
[23] Chen, Zhangwei, Li, Ziyong, Li, Junjie, Liu, Chengbo, Lao, Changshi, Fu, Yuelong, Liu, Changyong, Li, Yang, Wang, Pei, and He, Yi. 3d printing of ceramics: A review. Journal of the European Ceramic Society, 39(4):661–687, 2019.
[24] Sun, Q, Rizvi, GM, Bellehumeur, CT, and Gu, P. Effect of processing conditions on the bonding quality of fdm polymer filaments. Rapid Prototyping Journal, 14(2):72–80, 2008.
[25] Kruth, J-P, Mercelis, Peter, Van Vaerenbergh, J, Froyen, Ludo, and Rombouts, Marleen. Binding mechanisms in selective laser sintering and selective laser melting. Rapid prototyping journal, 2005.
[26] Fina, Fabrizio, Goyanes, Alvaro, Gaisford, Simon, and Basit, Abdul W. Selective laser sintering (sls) 3d printing of medicines. International journal of pharmaceutics, 529(1- 2):285–293, 2017.
[27] Santos, Edson Costa, Shiomi, Masanari, Osakada, Kozo, and Laoui, Tahar. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 46(12-13):1459–1468, 2006.
[28] Ahmed, Naveed. Direct metal fabrication in rapid prototyping: A review. Journal of Manufacturing Processes, 42:167–191, 2019.
[29] Biamino, Sara, Penna, A., Ackelid, Ulf, Sabbadini, S., Tassa, Oriana, Fino, Paolo, Pavese, Matteo, Gennaro, P., and Badini, C. Electron beam melting of Ti−48 Al−2 C−2 Nb alloy: Microstructure and mechanical properties investigation. Intermetallics, 19:776–781, 06 2011.
[30] Murr, Lawrence E, Gaytan, SM, Ceylan, A, Martinez, E, Martinez, JL, Hernandez, DH, Machado, BI, Ramirez, DA, Medina, F, Collins, S, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta materialia, 58(5):1887–1894, 2010.
[31] Nguyen, Alexander K and Narayan, Roger J. 3d printing in the biomedical field. Encyclopedia of Biomedical Engineering, 90(6):3.99875–1, 2018.
[32] Lee, Jungwoo, Cuddihy, Meghan J, and Kotov, Nicholas A. Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews, 14(1):61–86, 2008.
[33] Włodarczyk-Biegun, Małgorzata K and del Campo, Aránzazu. 3d bioprinting of structural proteins. Biomaterials, 134:180–201, 2017.
[34] Murphy, Sean V and Atala, Anthony. 3d bioprinting of tissues and organs. Nature biotechnology, 32(8):773, 2014.
[35] Aimar, Anna, Palermo, Augusto, and Innocenti, Bernardo. The role of 3d printing in medical applications: A state of the art. Journal of healthcare engineering, 2019, 2019.
[36] Bakhshinejad, Ali and D’souza, Roshan M. A brief comparison between available bio-printing methods. in 2015 IEEE Great Lakes biomedical conference (GLBC), pp. 1– 3. IEEE, 2015.
[37] Murphy, Sean V and Atala, Anthony. 3d bioprinting of tissues and organs. Nature biotechnology, 32(8):773, 2014.
[38] Zineh, Babak Roushangar, Shabgard, Mohammad Reza, and Roshangar, Leila. Mechanical and biological performance of printed alginate/methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds. Materials Science and Engineering: C, 92:779–789, 2018.
[39] Chen, Jinlin, Cai, Zhongyuan, Wei, Qingrong, Wang, Dan, Wu, Jun, Tan, Yanfei, Lu, Jian, and Ai, Hua. Proanthocyanidin-crosslinked collagen/konjac glucomannan hydrogel with improved mechanical properties and mritrackable biodegradation for potential tissue engineering scaffolds. Journal of Materials Chemistry B, 2020.
[40] Sahar goneh Farahani, Mohammad Reza Naimi Jamal, Seyed Morteza Naqib. Overview of chitosan-based nanocomposite fabrication in drug delivery. Iran Polymer Technology, 2(13):67–76, 2017.
[41] Farnah sadat Fatahi, Akbar Khodami, Hossein Izdan. Review on production, properties, and applications of poly(lactic acid) fibers. Textile Science and Technology, 91(8):11–17, 2016.
[42] Hu, Duo, Wu, Dongwei, Huang, Lin, Jiao, Yanpeng, Li, Lihua, Lu, Lu, and Zhou, Changren. 3d bioprinting of cellladen scaffolds for intervertebral disc regeneration. Materials Letters, 223:219–222, 2018.
[43] Malda, Jos, Visser, Jetze, Melchels, Ferry P, Jüngst, Tomasz, Hennink, Wim E, Dhert, Wouter JA, Groll, Jürgen, and Hutmacher, Dietmar W. 25th anniversary article: engineering hydrogels for biofabrication. Advanced materials, 25(36):5011–5028, 2013.
[44] Yang, Xingchen, Lu, Zhenhui, Wu, Huayu, Li, Wei, Zheng, Li, and Zhao, Jinmin. Collagen-alginate as bioink for threedimensional (3d) cell printing based cartilage tissue engineering. Materials Science and Engineering: C, 83:195– 201, 2018