بررسی روش‌های شبیه‌سازی CFD مخازن همزن‌دار دوفازی گاز-مایع

نوع مقاله: مقاله علمی پژوهشی

نویسنده

استادیار، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه سمنان، سمنان

چکیده

تعداد زیادی از واکنش‌های موجود در صنایع شیمیایی مانند فرآیندهای اکسیداسیون، هیدروژناسیون و بیولوژیکی در محیط‌های دو فازی گاز-مایع و توسط مخازن همزن‌دار انجام می‌شوند. در این محیط‌ها به کمک فرآیند اختلاط، فاز گاز به صورت حباب‌هایی در فاز مایع پراکنده می‌شود تا سطح انتقال جرم مواد بین فاز گاز و مایع برای انجام واکنش‌های شیمیایی افزایش یافته و در نتیجه بازدهی راکتور افزایش پیدا کند. با توجه به اهمیت رفتار هیدرودینامیکی راکتورهای همزن‌دار دوفازی گاز-مایع بر میزان پراکندگی فاز گاز در فاز مایع و تأثیر آن بر بازدهی فرآیند، شبیه‌سازی CFD به عنوان راهکاری مؤثر برای بررسی عملکرد مخازن همزن‌دار به طور گسترده توسط محققین مورد استفاده قرار گرفته است. در این پژوهش، با بررسی مدل‌های ارائه‌شده در زمینه شبیه‌سازی CFD مخزن همزن‌دار، پرکاربردترین مدل‌های مورد استفاده در شبیه‌سازی رفتار جریان مغشوش، نحوه مدل‌سازی پره در مخزن و همچنین مدل‌های پیش‌بینی رفتار چند فازی در شبیه‌سازی‌های CFD مخازن همزن‌دار معرفی گردیده و ویژگی‌های آن‌ها مورد بحث و بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] Verzicco, R., Fatica, M., Iaccarino, G., and Orlandi, P. Flow in an impeller-stirred tank using an immersedboundary method. AIChE Journal, 50(6):1109–1118, 2004.
[2] Sbrizzai, Fabio, Lavezzo, Valentina, Campolo, Marina, and Soldati, Alfredo. Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor. Chemical Engineering Science, 61:2843–2851, 05 2006.
[3] Derksen, J.J. Highly resolved simulations of solids suspension in a small mixing tank. AIChE Journal, 58(10):3266– 3278, 2012.
[4] Joshi, Jyeshtharaj B., Nere, Nandkishor K., Rane, Chinmay V., Murthy, B. N., Mathpati, Channamallikarjun S., Patwardhan, Ashwin W., and Ranade, Vivek V. Cfd simulation of stirred tanks: Comparison of turbulence models. part i: Radial flow impellers. The Canadian Journal of Chemical Engineering, 89(1):23–82, 2011.
[5] Hartmann, H., Derksen, J. J., and van den Akker, H. E. A. Macroinstability uncovered in a rushton turbine stirred tank by means of les. AIChE Journal, 50(10):2383–2393, 2004.
[6] Bakker, A. and Oshinowo, L.M. Modelling of turbulence in stirred vessels using large eddy simulation. Chemical Engineering Research and Design, 82(9):1169 – 1178, 2004. In Honour of Professor Alvin W. Nienow.
[7] Yeoh, S.L., Papadakis, G., and Yianneskis, M. Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation. Chemical Engineering Science, 60(8):2293 – 2302, 2005. 5th International Symposium on Mixing in Industrial Processes (ISMIP5).
[8] Sungkorn, R., Derksen, J.J., and Khinast, J.G. Modeling of aerated stirred tanks with shear-thinning power law liquids. International Journal of Heat and Fluid Flow, 36:153 – 166, 2012.
[9] Sungkorn, R., Derksen, J. J., and Khinast, J. G. Euler– lagrange modeling of a gas–liquid stirred reactor with consideration of bubble breakage and coalescence. AIChE Journal, 58(5):1356–1370, 2012.
[10] Zhang, Qinghua, Yang, Chao, Mao, Zai-Sha, and Mu, Junjuan. Large eddy simulation of turbulent flow and mixing time in a gas–liquid stirred tank. Industrial & Engineering Chemistry Research, 51(30):10124–10131, Aug 2012.
[11] Mathpati, C. S. and Joshi, J. B. Insight into theories of heat and mass transfer at the solid−fluid interface using direct numerical simulation and large eddy simulation. Industrial & Engineering Chemistry Research, 46(25):8525– 8557, Dec 2007.
[12] Ranade, V.V., Perrard, M., Le Sauze, N., Xuereb, C., and Bertrand, J. Trailing vortices of rushton turbine: Piv measurements and cfd simulations with snapshot approach. Chemical Engineering Research and Design, 79(1):3 – 12, 2001.
[13] Jones, Raymond M., Harvey, Albert D., III, and Acharya, Sumanta. Two-Equation Turbulence Modeling for Impeller Stirred Tanks . Journal of Fluids Engineering, 123(3):640– 648, 03 2001.
[14] Ranade, Vivek V., Tayalia, Yatin, and Krishnan, H. Cfd predictions of flow near impeller blades in baffled stirred vessels: Assessment of computational snapshot approach. Chemical Engineering Communications, 189(7):895–922, 2002.
[15] Kálal, Zbyněk, Jahoda, Milan, and Fořt, Ivan. Modelling of the bubble size distribution in an aerated stirred tank: Theoretical and numerical comparison of different breakup models. Chemical and Process Engineering, (No 3 September):331–348, 2014.
[16] Numerical Study of Single Phase Liquid Mixing in Stirred Tanks Fitted With Rushton Turbine and Flotation Impeller, vol. Volume 7A: Fluids Engineering Systems and Technologies of ASME International Mechanical Engineering Congress and Exposition, 11 2013. V07AT08A047.
[17] Lane, G.L., Schwarz, M.P., and Evans, G.M. Numerical modelling of gas–liquid flow in stirred tanks. Chemical Engineering Science, 60(8):2203 – 2214, 2005. 5th International Symposium on Mixing in Industrial Processes (ISMIP5).
[18] Murthy, B.N., Deshmukh, N.A., Patwardhan, A.W., and Joshi, J.B. Hollow self-inducing impellers: Flow visualization and cfd simulation. Chemical Engineering Science, 62(14):3839 – 3848, 2007.
[19] Chtourou, Wajdi, Ammar, Meriem, Driss, Zied, and Abid, Mohamed. Effect of the turbulence models on rushton turbine generated flow in a stirred vessel. Open Engineering, 1(4):380 – 389, 01 Dec. 2011.
[20] Ammar, Meriem, Driss, Zied, Chtourou, Wajdi, and Abid, Mohamed S. Effects of baffle length on turbulent flows generated in stirred vessels. Central European Journal of Engineering, 1(4):401, Aug 2011.
[21] Ammar, M., Chtourou, W., Driss, Z., and Abid, M.S. Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system. Energy, 36(8):5081 – 5093, 2011. PRES 2010.
[22] Jenne, Marc and Reuss, Matthias. A critical assessment on the use of k–ff turbulence models for simulation of the turbulent liquid flow induced by a rushton-turbine in baffled stirred-tank reactors. Chemical Engineering Science, 54(17):3921 – 3941, 1999.
[۲۳] پهلوانی, صادق, هاشم‌آبادی, سید~حسن, و حیدری, امیر. شبیه‌سازی CFD هیدرودینامیک راکتورحبابی- دوغابی همزن‌دار تولید ترفتالیک
اسید پتروشیمی شهید تندگویان. پژوهش نفت, 24(79):83--94, 2014.
[24] Launder, B. E. Current capabilities for modelling turbulence in industrial flows, pp. 37–59. Springer Netherlands, Dordrecht, 1991.
[25] Hanjalić, K. Advanced turbulence closure models: a view of current status and future prospects. International Journal of Heat and Fluid Flow, 15(3):178 – 203, 1994.
[26] Aghbolaghy, Mostafa and Karimi, Afzal. Simulation and optimization of enzymatic hydrogen peroxide production in a continuous stirred tank reactor using cfd–rsm combined method. Journal of the Taiwan Institute of Chemical Engineers, 45(1):101 – 107, 2014.
[27] Vlček, Petr, Skočilas, Jan, and Jirout, Tomáš. Cfd simulation of a stirred dished bottom vessel. Acta Polytechnica, 53, 12 2013.
[28] Han, Ying, Wang, Jia-Jun, Gu, Xue-Ping, and Feng, LianFang. Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor. Chemical Engineering Science, 74:9 – 17, 2012.
[29] Wucherpfennig, Thomas, Krull, Rainer, and Esfandabadi, Manely. Agitation induced mechanical stress in stirred tank bioreactors-linking cfd simulations to fungal morphology. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 45:742–748, 01 2012.
[30] Abu-Farah, L., Al-Qaessi, F., and Schönbucher, A. Cyclohexane/water dispersion behaviour in a stirred batch vessel experimentally and with cfd simulation. Procedia Computer Science, 1(1):655 – 664, 2010. ICCS 2010.
[31] Gillis, Paul, Hommersom, Gerrit, and Schäfer, Matthias. A comparison of several cfd approaches for predicting gasliquid contacting in a cylindrical tank agitated with a single rushton turbine. vol. 448, 01 2002.
[32] Kerdouss, F., Bannari, A., Proulx, P., Bannari, R., Skrga, M., and Labrecque, Y. Two-phase mass transfer coefficient prediction in stirred vessel with a cfd model. Computers & Chemical Engineering, 32(8):1943 – 1955, 2008.
[33] Wodołażski, Artur. Cfd-population balance modelling of catalyst particles in solid-liquid rushton turbine-agitated tank reactor in scale-up study. Powder Technology, 313:312 – 322, 2017.
[34] Kamla, Y., Bouzit, M., Hadjeb, A., Arab, I. M., and Beloudane, M. Cfd study of the effect of baffles on the energy consumption and the flow structure in a vessel stirred by a rushton turbine. Mechanika, 22:190+, 2020/8/30/ 2016. 3.
[35] Azargoshasb, Hamidreza, Mousavi, Seyyed Mohammad, Jamialahmadi, Oveis, Shojaosadati, Seyed Abbas, and Mousavi, Seyyed Babak. Experiments and a three-phase computational fluid dynamics (cfd) simulation coupled with population balance equations of a stirred tank bioreactor for high cell density cultivation. The Canadian Journal of Chemical Engineering, 94(1):20–32, 2016.
[36] Murthy, J. Y., Mathur, S. R., and Choudhary, D. Cfd simulation of flows in stirred tank rectors using a sliding mesh technique. 8th European Conference on Mixing, pp. 21–23, Cambridge, UK, 1994. Institution of Chemical Engineers.
[37] Deen, Niels G., Solberg, Tron, and Hjertager, Bjørn H. Flow generated by an aerated rushton impeller: Two-phase piv experiments and numerical simulations. The Canadian Journal of Chemical Engineering, 80(4):1–15, 2002.
[38] Jahoda, M., Tomášková, L., and Moštěk, M. Cfd prediction of liquid homogenisation in a gas–liquid stirred tank. Chemical Engineering Research and Design, 87(4):460 – 467, 2009. 13th European Conference on Mixing: New developments towards more efficient and sustainable operations.
[39] Perng, Chin Yuan, Murthy, J. Y., Calabrese, R. V., and Tatterson, G. B. A moving-deforming-mesh technique for simulation of flow in mixing tanks, symposium, process mixing: chemical and biochemical applications. in AICHE SYMPOSIUM SERIES, Process mixing: chemical and biochemical applications, Symposium, Process mixing: chemical and biochemical applications, no. 293, pp. 37–41, New York, NY, 1992. American Institute of Chemical Engineers;.
[40] Derksen, J. J. Numerical simulation of solids suspension in a stirred tank. AIChE Journal, 49(11):2700–2714, 2003.
[41] Witz, Christian, Treffer, Daniel, Hardiman, Timo, and Khinast, Johannes. Local gas holdup simulation and validation of industrial-scale aerated bioreactors. Chemical Engineering Science, 152:636 – 648, 2016.
[42] Joshi, Jyeshtharaj B., Nere, Nandkishor K., Rane, Chinmay V., Murthy, B. N., Mathpati, Channamallikarjun S., Patwardhan, Ashwin W., and Ranade, Vivek V. Cfd simulation of stirred tanks: Comparison of turbulence models (part ii: Axial flow impellers, multiple impellers and multiphase dispersions). The Canadian Journal of Chemical Engineering, 89(4):754–816, 2011.
[43] Pinelli, D., Montante, G., and Magelli, F. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers. Chemical Engineering Science, 59(15):3081 – 3089, 2004.
[44] Khopkar, Avinash R. and Ranade, Vivek V. Cfd simulation of gas–liquid stirred vessel: Vc, s33, and l33 flow regimes. AIChE Journal, 52(5):1654–1672, 2006.
[45] Khopkar, A. R., Kasat, G. R., Pandit, A. B., and Ranade, V. V. Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor. Industrial & Engineering Chemistry Research, 45(12):4416–4428, Jun 2006.
[46] Bao, Yuyun, Yang, Jie, Chen, Lei, and Gao, Zhengming. Influence of the top impeller diameter on the gas dispersion in a sparged multi-impeller stirred tank. Industrial & Engineering Chemistry Research, 51(38):12411–12420, Sep 2012.
[47] Zhang, Yanhong, Bai, Yulan, and Wang, Hualin. Cfd analysis of inter-phase forces in a bubble stirred vessel. Chemical Engineering Research and Design, 91(1):29 – 35, 2013
[48] Bao, Yuyun, Yang, Jie, Wang, Bingjie, and Gao, Zhengming. Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank. Chinese Journal of Chemical Engineering, 23(4):615 – 622, 2015.
[49] Bao, Yuyun, Wang, Bingjie, Lin, Mingli, Gao, Zhengming, and Yang, Jie. Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank. Chinese Journal of Chemical Engineering, 23(6):890 – 896, 2015.