مطالعه‌ای بر تأثیر عناصر آلیاژی روی خواص مکانیکی و ریزساختاری فولادهای پیشرفته استحکام بالا

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه بناب

2 استادیار، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه بناب

چکیده

تحقیق حاضر، مروری بر مطالعات پیشین انجام‌شده بر تأثیر عناصر آلیاژی مختلف نظیر کربن، آلومینیم، سیلیسیم، منگنز، بور، مس،کروم، مولیبدن، هیدروژن، نیتروژن، تیتانیم، نیوبیوم، وانادیوم و نیکل روی خواص فولادهای پیشرفته استحکام بالا دارد. فولادهای پیشرفته استحکام بالا جزو جدیدترین نسل فولادها هستند که در سال‌های اخیر توجه زیادی را به خود جلب کرده‌اند. این فولادها به‌واسطه داشتن ریزساختارهای پیچیده متشکل از فریت، مارتنزیت، بینیت و آستنیت باقیمانده دارای ترکیبی از استحکام بسیار بالا و ازدیاد طول نسبی زیاد هستند که این مهم با کنترل ریزساختار از طریق کنترل دقیق میزان و نوع عناصر آلیاژی و انجام عملیات حرارتی نظیر آنیل بین بحرانی و عملیات ترمومکانیکی مانند نورد گرم و نورد داغ قابل حصول است. تحقیقات گسترده‌ای بر توسعه این آلیاژها و بررسی مکانیزم‌های استحکام‌دهی و کرنش‌سختی این آلیاژها انجام شده است که درنهایت منجر به معرفی دو نوع از مهم‌ترین این فولادها با عناوین TRIP و TWIP گشته است که در آن‌ها عناصر آلیاژی نقشی تعیین‌کننده در ایجاد ریزساختار آستنیتی، تغییر انرژی نقص در چیدمان، تغییر چگالی نابجایی‌ها و نرخ کرنش‌سختی دارند. خلاصه‌ای از مطالعات پیشین به تفکیک عناصر آلیاژی و چگونگی تأثیر آن‌ها بر خواص مختلف این فولادها در مقاله حاضر ارائه می‌گردد.

کلیدواژه‌ها

موضوعات


[1] Roy, Tapas Kumar, Bhattacharya, Basudev, Ghosh, Chiradeep, and Ajmani, SK. Advanced high strength steel. Springer, 2018.
[2] Demeri, Mahmoud Y. Advanced high-strength steels. Science, Technology, and Application, ASM International, USA, 2013.
[3] Song, Hyejin, Sohn, Seok Su, Kwak, Jai-Hyun, Lee, Byeong-Joo, and Lee, Sunghak. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-mn lightweight steels. Metallurgical and Materials Transactions A, 47(6):2674– 2685, 2016.
[4] Medvedeva, NI, Park, MS, Van Aken, David C, and Medvedeva, Julia E. First-principles study of mn, al and c distribution and their effect on stacking fault energies in fcc fe. Journal of Alloys and Compounds, 582:475–482, 2014.
[5] Abbasi, Afshin, Dick, Alexey, Hickel, Tilmann, and Neugebauer, Jörg. First-principles investigation of the effect of carbon on the stacking fault energy of fe–c alloys. Acta Materialia, 59(8):3041–3048, 2011.
[6] Hickel, Tilmann, Sandlöbes, Stefanie, Marceau, Ross KW, Dick, Alexey, Bleskov, Ivan, Neugebauer, Jörg, and Raabe, Dierk. Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta materialia, 75:147–155, 2014.
[7] De Cooman, Bruno C, Estrin, Yuri, and Kim, Sung Kyu. Twinning-induced plasticity (twip) steels. Acta Materialia, 142:283–362, 2018.
[8] De Cooman, BC. High mn twip steel and medium mn steel. in Automotive Steels, pp. 317–385. Elsevier, 2017.
[9] Lee, Tae-Ho, Ha, Heon-Young, Hwang, Byoungchul, Kim, Sung-Joon, and Shin, Eunjoo. Effect of carbon fraction on stacking fault energy of austenitic stainless steels. Metallurgical and Materials Transactions A, 43(12):4455–4459, 2012.
[10] Lee, Seung-Joon, Fujii, Hidetoshi, and Ushioda, Kohsaku. Thermodynamic calculation of the stacking fault energy in fe-cr-mn-cn steels. Journal of Alloys and Compounds, 749:776–782, 2018.
[11] Schramm, RE and Reed, RP. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions A, 6(7):1345, 1975.
[12] Aguilar-Hurtado, Jose, Vargas-Uscategui, Alejandro, Zambrano, Dario, and Palma-Hillerns, Rodrigo. The effect of boron content on the microstructure and mechanical properties of fe50-xmn30co10cr10bx (x=0, 0.3, 0.6 and 1.7 wt.multi-component alloys prepared by arc-melting. Materials Science and Engineering: A, 748, 03 2019.
[13] Emami, Mohammad, Askari-Paykani, Mohsen, Farabi, Ehsan, Beladi, Hossein, and Shahverdi, Hamid Reza. Development of new third-generation medium manganese advanced high-strength steels elaborating hot-rolling and intercritical annealing. Metallurgical and Materials Transactions A, 50(9):4261–4274, 2019.
[14] Hu, Bin, Luo, Haiwen, Yang, Feng, and Dong, Han. Recent progress in medium-mn steels made with new designing strategies, a review. Journal of Materials Science & Technology, 33(12):1457–1464, 2017.
[15] Chen, Shangping, Rana, Radhakanta, Haldar, Arunansu, and Ray, Ranjit Kumar. Current state of fe-mn-al-c low density steels. Progress in Materials Science, 89:345–391, 2017.
[16] Reeh, S, Music, D, Gebhardt, T, Kasprzak, M, Jäpel, T, Zaefferer, S, Raabe, D, Richter, S, Schwedt, A, Mayer, J, et al. Elastic properties of face-centred cubic fe–mn– c studied by nanoindentation and ab initio calculations. Acta Materialia, 60(17):6025–6032, 2012.
[17] Dumay, A, Chateau, J-P, Allain, S, Migot, S, and Bouaziz, O. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic fe–mn–c steel. Materials Science and Engineering: A, 483:184–187, 2008.
[18] Fajardo, S, Llorente, Irene, Jiménez, José Antonio, Bastidas, JM, and Bastidas, David M. Effect of mn additions on the corrosion behaviour of twip fe-mn-al-si austenitic steel in chloride solution. Corrosion Science, 154:246–253, 2019.
[19] Sun, Binhan, Ding, Ran, Brodusch, Nicolas, Chen, Hao, Guo, Baoqi, Fazeli, Fateh, Ponge, Dirk, Gauvin, Raynald, and Yue, Stephen. Improving the ductility of ultrahighstrength medium mn steels via introducing pre-existed austenite acting as a “reservoir” for mn atoms. Materials Science and Engineering: A, 749:235–240, 2019.
[20] Cai, Minghui, Li, Zhun, Chao, Qi, and Hodgson, Peter D. A novel mo and nb microalloyed medium mn trip steel with maximal ultimate strength and moderate ductility. Metallurgical and Materials Transactions A, 45(12):5624–5634, 2014.
[21] Hamada, Atef, Juuti, Timo, Khosravifard, Ali, Kisko, Anna, Karjalainen, Pentti, Porter, David, and Kömi, Jukka. Effect of silicon on the hot deformation behavior of microalloyed twip-type stainless steels. Materials & Design, 154:117–129, 2018.
[۲۲] فتاح الحسینی, آرش, علی‌زاد, سجاد, و اسدی اسدآباد, محسن. بررسی مقایسه ای رفتار خوردگی چهار فولاد آستنیتی کروم و منگنزدار و فولاد زنگ نزن 316 کم کربن در محلول 0.1 مولار اسید سولفوریک. دوفصلنامه مهندسی متالورژی و مواد, 25(2), 1393.
[23] Limmer, KR, Medvedeva, Julia E, Van Aken, David C, and Medvedeva, NI. Ab initio simulation of alloying effect on stacking fault energy in fcc fe. Computational Materials Science, 99:253–255, 2015.
[24] Pierce, Donald T, Jiménez, Jose Antonio, Bentley, James, Raabe, Dierk, and Wittig, James E. The influence of stacking fault energy on the microstructural and strainhardening evolution of fe–mn–al–si steels during tensile deformation. Acta Materialia, 100:178–190, 2015.
[25] Li, ZC, Zhang, XT, Mou, YJ, Misra, RDK, He, LF, and Li, HP. The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and trip effect in medium-mn trip steels. Materials Science and Engineering: A, 746:363– 371, 2019.
[26] Huang, BX, Wang, XD, Wang, L, and Rong, YH. Effect of nitrogen on stacking fault formation probability and mechanical properties of twinning-induced plasticity steels. Metallurgical and Materials Transactions A, 39(4):717– 724, 2008.
[27] Kalsar, Rajib, Ray, Ranjit Kumar, and Suwas, Satyam. Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in fe12mn-0.5 c austenitic steel. Materials Science and Engineering: A, 729:385–397, 2018.
[28] Jeong, JS, Woo, W, Oh, KH, Kwon, SK, and Koo, YM. In situ neutron diffraction study of the microstructure and tensile deformation behavior in al-added high manganese austenitic steels. Acta Materialia, 60(5):2290–2299, 2012.
[29] Kim, Min Tae, Park, Tak Min, Baik, Kyeong-Ho, Choi, Won Seok, and Han, Jeongho. Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-mn steels. Materials Science and Engineering: A, 752:43–54, 2019.
[30] Jeong, Kookhyun, Jin, Jae-Eun, Jung, Yeon-Seung, Kang, Singon, and Lee, Young-Kook. The effects of si on the mechanical twinning and strain hardening of fe–18mn– 0.6 c twinning-induced plasticity steel. Acta materialia, 61(9):3399–3410, 2013.
[31] Schmitt, Jean-Hubert and Iung, Thierry. New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique, 19(8):641–656, 2018.
[۳۲] سعید, مجیدی, شهرام, خیراندیش, و مجید, عباسی. اثر آلومینیم بر ریزساختار و خواص مکانیکی فولاد پرمنگنز آستنیتی Fe-18Mn-0.6C.
[33] Liu, Shuai, Qian, Lihe, Meng, Jiangying, Li, Dongdong, Ma, Penghui, and Zhang, Fucheng. Simultaneously increasing both strength and ductility of fe-mn-c twinninginduced plasticity steel via cr/mo alloying. Scripta Materialia, 127:10–14, 2017.
[34] Jung, Il-Chan and De Cooman, Bruno C. Temperature dependence of the flow stress of fe–18mn–0.6 c–xal twinninginduced plasticity steel. Acta materialia, 61(18):6724– 6735, 2013.
[35] Canadinc, D, Sehitoglu, Huseyin, Maier, HJ, and Chumlyakov, YI. Strain hardening behavior of aluminum alloyed hadfield steel single crystals. Acta Materialia, 53(6):1831–1842, 2005.
[36] Abbaschian, Reza and Reed-Hill, Robert E. Physical metallurgy principles. Cengage Learning, 2008.
[37] Lehnhoff, GR, Findley, KO, and De Cooman, BC. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Materialia, 92:19–22, 2014.
[38] Yang, HK, Zhang, ZJ, Tian, YZ, and Zhang, ZF. Negative to positive transition of strain rate sensitivity in fe-22mn0.6 cx (al) twinning-induced plasticity steels. Materials Science and Engineering: A, 690:146–157, 2017.
[39] Koyama, Motomichi, Akiyama, Eiji, Lee, Young-Kook, Raabe, Dierk, and Tsuzaki, Kaneaki. Overview of hydrogen embrittlement in high-mn steels. international journal of hydrogen energy, 42(17):12706–12723, 2017.
[40] Hamada, AS, Kisko, A, Khosravifard, A, Hassan, MA, Karjalainen, LP, and Porter, D. Ductility and formability of three high-mn twip steels in quasi-static and high-speed tensile and erichsen tests. Materials Science and Engineering: A, 712:255–265, 2018.
[41] Tian, Xing and Zhang, Yansheng. Effect of si content on the stacking fault energy in γ-fe–mn–si–c alloys: Part i. xray diffraction line profile analysis. Materials Science and Engineering: A, 516(1-2):73–77, 2009.
[42] Zhou, Tao, Babu, R Prasath, Odqvist, Joakim, Yu, Hao, and Hedström, Peter. Quantitative electron microscopy and physically based modelling of cu precipitation in precipitation-hardening martensitic stainless steel 15-5 ph. Materials & Design, 143:141–149, 2018.
[43] Kwon, Young Jin, Lee, Taekyung, Lee, Junmo, Chun, Young Soo, and Lee, Chong Soo. Role of cu on hydrogen embrittlement behavior in fe–mn–c–cu twip steel. International Journal of Hydrogen Energy, 40(23):7409–7419, 2015.
[44] Wang, Dong, Lu, Xu, Deng, Yun, Guo, Xiaofei, and Barnoush, Afrooz. Effect of hydrogen on nanomechanical properties in fe-22mn-0.6 c twip steel revealed by insitu electrochemical nanoindentation. Acta Materialia, 166:618–629, 2019.
[45] Lee, Sangwon, Kim, Jinkyung, Lee, Seok-Jae, and De Cooman, Bruno C. Effect of cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel. Scripta Materialia, 65(12):1073–1076, 2011.
[46] Lee, Seung-Joon, Jung, Yeon-Seung, Baik, Sung-Il, Kim, Young-Woon, Kang, Mihyun, Woo, Wanchuck, and Lee, Young-Kook. The effect of nitrogen on the stacking fault energy in fe–15mn–2cr–0.6 c–xn twinning-induced plasticity steels. Scripta Materialia, 92:23–26, 2014.
[47] Wang, XJ, Sun, XJ, Song, Cheng, Chen, H, Han, W, and Pan, F. Enhancement of yield strength by chromium/nitrogen alloying in high-manganese cryogenic steel. Materials Science and Engineering: A, 698:110–116, 2017.
[48] Han, Y, Shi, J, Xu, L, Cao, WQ, and Dong, H. Effect of hot rolling temperature on grain size and precipitation hardening in a ti-microalloyed low-carbon martensitic steel. Materials Science and Engineering: A, 553:192–199, 2012.
[49] He, BB, Huang, BM, He, SH, Qi, Y, Yen, HW, and Huang, MX. Increasing yield strength of medium mn steel by engineering multiple strengthening defects. Materials Science and Engineering: A, 724:11–16, 2018.
[50] Han, Y, Shi, J, Xu, L, Cao, WQ, and Dong, H. Effects of ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel. Materials & Design, 34:427–434, 2012.
[51] Han, Y, Shi, J, Xu, L, Cao, WQ, and Dong, H. Tic precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel. Materials Science and Engineering: A, 530:643–651, 2011.
[52] He, BB, Huang, BM, He, SH, Qi, Y, Yen, HW, and Huang, MX. Increasing yield strength of medium mn steel by engineering multiple strengthening defects. Materials Science and Engineering: A, 724:11–16, 2018.
[53] Lee, Seung-Joon, Fujii, Hidetoshi, and Ushioda, Kohsaku. Thermodynamic calculation of the stacking fault energy in fe-cr-mn-cn steels. Journal of Alloys and Compounds, 749:776–782, 2018.
[54] Jiang, Bohong, Qi, Xuan, Yang, Shaoxiong, Zhou, Weiming, and Hsu, TY. Effect of stacking fault probability on γ–ε martensitic transformation and shape memory effect in fe–mn–si based alloys. Acta materialia, 46(2):501–510, 1998.
[55] Baron, Christian, Springer, Hauke, and Raabe, Dierk. Effects of mn additions on microstructure and properties of fe–tib2 based high modulus steels. Materials & Design, 111:185–191, 2016.