ساخت مدار خنک‌کاری پاششی سیال برودتی دی‌اکسیدکربن در ماشین‌کاری

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران

2 استادیار مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران

چکیده

کیفیت بالاتر قطعه‌کار و عمر طولانی‌تر ابزار از مهم‌ترین نیازهای ماشین‌کاری هستند که حرارت بیش از اندازه در ماشین‌کاری، تأثیر منفی بر آن‌ها می‌گذارد. معمولا اعمال روش‌های خنک‌کاری‌ مرسوم، کنترل مطلوبی بر دمای ماشین‌کاری را سبب نمی‌گردد، همچنین استفاده از آن‌ها اغلب مشکلات زیست محیطی را ایجاد می‌کند. اخیرا خنک‌کاری برودتی برای حل این مشکلات در ماشین‌کاری مورد توجه است. در تحقیق جاری یک مدار برودتی دی‌اکسیدکربن با توانایی نصب و تنظیم یک یا دو نازل خروجی سیال خنک‌کار در موقعیت‌های مختلف و هم‌چنین توانایی تنظیم مقدار دبی سیال خنک‌کار طراحی و ساخته شد. مدار با یک نازل در موقعیت بالای ابزار برش (با 80 درجه زاویه تند نسبت به سطح براده ابزار و mm 20 فاصله خروجی نازل از نوک ابزار) و دبی 12 l/min که طی بررسی حالات مختلف حاصل شدند، کمترین سایش و لبه انباشته ابزار و زبری سطح قطعه‌کار را با توجه به مقدار مصرف دبی کمتر ایجاد می‌کند. سپس این حالت تعیین شده از مدار، برای مقایسه با روش خشک به منظور بررسی روش برودتی و تأثیر آن استفاده شد. با کاربرد روش برودتی نسبت به خشک، مساحت سایش سطح آزاد اصلی ابزار (از حداقل 0.36 % تا حداکثر 33.92 %، لبه انباشته ابزار، زبری سطح قطعه‌کار (از حداقل
5.62 % تا حداکثر 56.32 %) و عیوب سطح قطعه‌کار کاهش یافت.

کلیدواژه‌ها

موضوعات


[1] Kalpakjian, Serope. Manufacturing engineering and technology. Institute of Publications and Printing of Tehran University, 2001.
[2] Jerold, B Dilip and Kumar, M Pradeep. Experimental comparison of carbon-dioxide and liquid nitrogen cryogenic coolants in turning of aisi 1045 steel. Cryogenics, 52(10):569–574, 2012.
[3] Pittalà, Gaetano M. A study of the effect of co2 cryogenic coolant in end milling of ti-6al-4v. Procedia Cirp, 77:445–448, 2018.
[4] Hotz, H, Kirsch, B, Becker, S, Harbou, E Von, Muller, R, and Aurich, JC. Modification of surface morphology during cryogenic turning of metastable austenitic steel aisi 347 at different parameter combinations with constant co2 consumption per cut. Procedia Cirp, 77:207–210, 2018.
[5] Jerold, B Dilip and Kumar, M Pradeep. Machining of aisi 316 stainless steel under carbon-di-oxide cooling. Materials and Manufacturing Processes, 27(10):1059–1065, 2012.
[6] Wika, KK, Gurdal, O, Litwa, P, and Hitchens, C. Influence of supercritical co2 cooling on tool wear and cutting forces in the milling of ti-6al-4v. Procedia Cirp, 82:89–94, 2019.
[7] Magadum, Sunil, Kumar, Arun, Yoganath, VG, and Srinivasa, CK. Cryogenic machining of ss304 steel. 2014.
[8] Umbrello, Domenico, Pu, Z, Caruso, S, Outeiro, JC, Jayal, AD, Dillon, OW, and Jawahir, IS. The effects of cryogenic cooling on surface integrity in hard machining. Procedia Engineering, 19:371–376, 2011.
[9] Babamiri, Mohammad. Cryogenic cooling a new approach to cooling cutting tool. Technical Journal of Manufacturing and production Engineering, (38):204–210, 2012.
[10] Sharma, Vishal S, Dogra, Manu, and Suri, NM. Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49(6):435–453, 2009.
[11] Tajdari, Mahdi, Zare Chavoshi, Saeed, and Shahbazi, Ehsan. Design and requirements of cryogenic cooling process using liquid nitrogen in turning, 2009.
[12] Khan, Ahsan Ali and Ahmed, Mirghani I. Improving tool life using cryogenic cooling. Journal of materials processing technology, 196(1-3):149–154, 2008.
[13] Gupta, Munish Kumar and Sood, Pardeep Kumar. Optimizing multi characterstics in machining of aisi 4340 steel using taguchi’s approach and utility concept. Journal of The Institution of Engineers (India): Series C, 97(1):63– 69, 2016.
[14] Yildiz, Yakup and Nalbant, Muammer. A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture, 48(9):947–964, 2008.
[15] Selvaraj, D Philip, Chandramohan, P, and Mohanraj, M. Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using taguchi method. Measurement, 49:205– 215, 2014.
[16] Bordin, A, Bruschi, S, and Ghiotti, A. The effect of cutting speed and feed rate on the surface integrity in dry turning of cocrmo alloy. Procedia Cirp, 13:219–224, 2014.
[17] Ulutan, Durul and Ozel, Tugrul. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3):250–280, 2011.
[18] Thakur, A and Gangopadhyay, S. State-of-the-art in surface integrity in machining of nickel-based super alloys. International Journal of Machine Tools and Manufacture, 100:25–54, 2016.
[19] Fernández-Abia, Ana Isabel, García, Joaquín Barreiro, and de Lacalle, Luis N López. High-performance machining of austenitic stainless steels. in Machining and machine-tools, pp. 29–90. Elsevier, 2013.
[20] Danish, Mohd, Ginta, Turnad Lenggo, Habib, Khairul, Carou, Diego, Rani, Ahmad Majdi Abdul, and Saha, Bidyut Baran. Thermal analysis during turning of az31 magnesium alloy under dry and cryogenic conditions. The International Journal of Advanced Manufacturing Technology, 91(5-8):2855–2868, 2017.