مروری بر فرایند اکستروژن اصطکاکی اغتشاشی

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مکانیک، دانشکده مهندسی، مؤسسه آموزش عالی پارسیان، قزوین، ایران

2 دانشجوی کارشناسی ارشد، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

3 استادیار، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

اکستروژن اصطکاکی اغتشاشی روشی است که هم برای بازیافت براده‌های ضایعاتی و هم برای شکل‌دهی مواد اولیه مانند یک شفت و تبدیل آن به محصول جدید مورد استفاده قرار می‌گیرد. این فرایند بطور معمول متشکل از یک قالب با سنبه دورانی و ماتریس ثابت است. ابتدا براده‌های فشرده شده یا ماده بالک اولیه در محفظه ماتریس قرار می‌‌گیرد. سپس با پیشروی سنبه چرخان با یک نیروی پیوسته‌ی محوری و در اثر تماس سنبه با مواد تحت فرایند، حرارت اصطکاکی بالایی در منطقه عملیات ایجاد می‌شود که موجب خمیری شدن و چسبیدن براده‌ها بهم می‌شود. با ادامه پیشروی سنبه موادِ خمیری شده تغییر شکل داده می‌شوند و از حفره داخل سنبه و یا فضای بین سنبه و ماتریس عبور داده می‌شوند که نتیجه آن تولید قطعه مورد هدف است که می‌تواند سیم یا لوله باشد. این روش می‌تواند برای بازیافت ضایعات ماشین‌کاری، تقویت محصولات متالورژی پودر، تولید مواد خام سیمی، تولید ساختارهایی با دانه‌بندی بسیار ریز و حتی نانو در مواد حجمی و توسعه آلیاژها و مواد کامپوزیتی جدید استفاده شود. مواد تولیدشده با این روش از لحاظ ریزساختاری، دانه‌های ریز و اصلاح شده دارند که روی خواص مکانیکی و متالورژیکی اثرات بسیار مفیدی ایجاد می‌کند. در این مقاله مروری، مجموعه‌ای از کارهای تجربی گردآوری شده است که برای بررسی خواص ریزساختاری و مکانیکی نمونه‌های تولیدشده به روش اکستروژن اصطکاکی اغتشاشی انجام گرفته‌اند.

کلیدواژه‌ها

موضوعات


[1] Givi, M.K.B. and Asadi, P. Advances in Friction-Stir Welding and Processing. 2014.
[2] Arora, Harpreet Singh, Grewal, Harpreet Singh, Singh, Harpreet, Dhindaw, Brij Kumar, McPhail, David, Shollock, Barbara, Chater, Richard, and Mukherjee, Sundeep. Microstructure-Property Relationship for Friction Stir Processed Magnesium Alloy. Advanced Engineering Materials, 16(1):94–102, 2014.
[3] Nascimento, F, Santos, T, Vilaça, P, Miranda, R M, and Quintino, L. Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys. Materials Science and Engineering: A, 506(1):16– 22, 2009.
[4] Mishra, R S, Ma, Z Y, and Charit, I. Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering: A, 341(1):307–310, 2003.
[5] Besharati-Givi, M-K and Asadi, Parviz. Advances in friction-stir welding and processing. Elsevier, 2014.
[6] Asadi, P., Faraji, G., Masoumi, A., and Givi, M.K.B. Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42(9), 2011.
[7] Asadi, P., Besharati Givi, M.K., Parvin, N., Araei, A., Taherishargh, M., and Tutunchilar, S. On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. International Journal of Advanced Manufacturing Technology, 63(9-12), 2012.
[8] Karthikeyan, L, Kumar, V S Senthil, and Padmanabhan, K A. Investigations on Superplastic Forming of Friction Stir-Processed AA6063-T6 Aluminum Alloy. Materials and Manufacturing Processes, 28(3):294–298, 2013.
[9] Ahmadkhaniha, D. and Asadi, P. Mechanical alloying by friction stir processing. in Advances in Friction-Stir Welding and Processing. 2014.
[10] Asadi, P., Mahdavinejad, R.A., and Tutunchilar, S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Materials Science and Engineering A, 528(21), 2011.
[11] Asadi, P., Givi, M.K.B., Abrinia, K., Taherishargh, M., and Salekrostam, R. Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. Journal of Materials Engineering and Performance, 20(9), 2011.
[12] Tang, W and Reynolds, A P. Production of wire via friction extrusion of aluminum alloy machining chips. Journal of Materials Processing Technology, 210(15):2231–2237, 2010.
[13] Zhang, Tielei, Ji, Zesheng, and Wu, Shuyan. Effect of extrusion ratio on mechanical and corrosion properties of AZ31B alloys prepared by a solid recycling process. Materials & Design, 32(5):2742–2748, 2011.
[14] Behnagh, Reza Abdi, Shen, Ninggang, Ansari, Mohammad Ali, Narvan, Morteza, Besharati Givi, Mohammad Kazem, and Ding, Hongtao. Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips. Journal of Manufacturing Science and Engineering, 138(4):41008–41011, oct 2015.
[15] Sharifzadeh, Mohammad, Ansari, Mohammad Ali, Narvan, Morteza, Behnagh, Reza Abdi, Araee, Alireza, and Givi, Mohammad Kazem Besharati. Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion. Transactions of Nonferrous Metals Society of China, 25(6):1847–1855, 2015.
[16] Ansari, Mohammad Ali, Sadeqzadeh Naeini, Emadoddin, Besharati Givi, Mohammad Kazem, and Faragi, Ghader. Theoretical and Experimental Investigation of the Effective Parameters on the Microstructure of magnesium Wire Produced by Friction Stir Extrusion. Modares Mechanical Engineering, 15(6), 2015.
[17] Baffari, Dario, Buffa, Gianluca, Campanella, Davide, Fratini, Livan, and Reynolds, Anthony P. Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation. Journal of Manufacturing Processes, 29:41–49, 2017.
[18] Tahmasbi, Kamin and Mahmoodi, Masoud. Investigation of the effective parameters on the mechanical and structural properties of aluminum wire sample fabricated by friction stir extrusion. Modares Mechanical Engineering, 17(4):78–84, 2017.
[19] Abu-Farha, Fadi. A preliminary study on the feasibility of friction stir back extrusion. Scripta Materialia, 66(9):615– 618, 2012.
[20] Li, X, Tang, W, and Reynolds, A P. Material Flow and Texture in Friction Extruded Wire, pp. 339–347. Springer International Publishing, Cham, 2016.
[21] Khorrami, Mahmoud Sarkari and Movahedi, Mojtaba. Microstructure evolutions and mechanical properties of tubular aluminum produced by friction stir back extrusion. Materials & Design (1980-2015), 65:74–79, 2015.
[22] Behnagh, Reza Abdi, Mahdavinejad, Ramezanali, Yavari, Amin, Abdollahi, Masoud, and Narvan, Morteza. Production of Wire From AA7277 Aluminum Chips via FrictionStir Extrusion (FSE). Metallurgical and Materials Transactions B, 45(4):1484–1489, aug 2014.
[23] Baffari, Dario, Buffa, Gianluca, Campanella, Davide, and Fratini, Livan. Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties. Procedia Manufacturing, 15:280–286, 2018.
[24] Jamali, Ghasem, Nourouzi, Salman, and Jamaati, Roohollah. Optimization of friction stir extrusion processing parameters for AA6063 aluminum alloy using Taguchi method. Modares Mechanical Engineering, 17(12):176– 182, 2018.
[25] Beigi, Masoud Ahmad Khan, Karami, Javad Shahbazi, and Sheikhi, Mohammad Morad. Experimental and numerical study of friction stir back extrusion process for producing ultra-fine-grained tubes. Iranian Journal of Manufacturing Engineering, 3(2):34–44, 2017.
[26] Dinaharan, I, Sathiskumar, R, Vijay, S J, and Murugan, N. Microstructural Characterization of Pure Copper Tubes Produced by a Novel Method Friction Stir Back Extrusion. Procedia Materials Science, 5:1502–1508, 2014.