مدل‌سازی داده‌های گرفته‌شده از دستگاه سی‌تی‌اسکن به کمک نرم‌افزار مهندسی پزشکی اینوسالیوس

نوع مقاله : علمی ترویجی

نویسندگان

دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک و مواد، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

مدل‌سازی هندسی در فرآیند طراحی و ساخت نقش مهمی دارد و بسیاری از پژوهشگران ایده‌های خود را به صورت مدل‌های هندسی مورد تحلیل و آزمایش قرار دادند. مدل‌سازی هندسی نقش بسزایی در پیشرفت‌های صنعتی و علوم مهندسی دارد. در سال‌های گذشته در زمینه مدل‌سازی اعضا بدن انسان فعالیت‌های زیادی انجام شده است. در این پژوهش روشی برای مدل‌سازی استخوان از عکس‌های سی‌تی‌اسکن ارائه شده است. در این روش پس از اسکن استخوان مورد نظر با دستگاه سی‌تی‌اسکن داده خام مربوط به هر استخوان که شامل تعدادی مقاطع در سه جهت کرنال، محوری و ساجیتال است، در حافظه دستگاه سی‌تی‌اسکن ذخیره شده و بعد از استخراج این داده‌ها با استفاده از نرم‌افزارMicro Dicom که یک نرم‌افزار تبدیل‌کننده است پسوند فایل را به Dicom تغییر داده تا بتوان در نرم افزار اینوسالیوس اجرا کرد. در نهایت با انجام عملیات سه‌بعدی‌سازی با این نرم‌افزار، مدل به دست آمده به صورت فایل stl ذخیره می‌شود تا با استفاده از روش‌های نمونه‌سازی سریع مانند پرینتر سه‌بعدی مدل ایجادشده از استخوان ساخته شود.

کلیدواژه‌ها


[1] Al Qahtani, Waleed M. S. and El-Anwar, Mohamed I. Advanced computational methods in bio-mechanics. Open Access Macedonian Journal of Medical Sciences, 6(4):742– 746, Apr. 2018.
[2] Ecabert, Olivier, Peters, Jochen, Schramm, Hauke, Lorenz, Cristian, von Berg, Jens, Walker, Matthew J, Vembar, Mani, Olszewski, Mark E, Subramanyan, Krishna, Lavi, Guy, et al. Automatic model-based segmentation of the heart in ct images. IEEE transactions on medical imaging, 27(9):1189–1201, 2008.
[3] Raos, Pero, Stoić, Antun, and Lucić, Mirjana. Rapid prototyping and rapid machining of medical implants. in 4th DAAAM International Conference on Advanced Technologies for Developing Countries, ATDC’05, 2005.
[4] Chelule, KL, Coole, T, and Cheshire, DG. Fabrication of medical models from scan data via rapid prototyping techniques. in Proceedings of the 2000 Conference on Time Compression Technologies. Cardiff International Arena, 2000.
[5] Sintini, Irene, Fitzpatrick, Clare K., Clary, Chadd W., Castelli, Vincenzo P., and Rullkoetter, Paul J. Computational evaluation of tkr stability using feedback-controlled compressive loading. Journal of Orthopaedic Research, 36(7):1901–1909, 2018.
[6] Sahoo, Debasis, Deck, Caroline, Yoganandan, Narayan, and Willinger, Rémy. Development of skull fracture criterion based on real-world head trauma simulations using finite element head model. Journal of the Mechanical Behavior of Biomedical Materials, 57:24 – 41, 2016.
[7] Belytschko, T., Kulak, R.F., Schultz, A.B., and Galante, J.O. Finite element stress analysis of an intervertebral disc. Journal of Biomechanics, 7(3):277 – 285, 1974.
[8] Yan Kang, Engelke, K., and Kalender, W. A. A new accurate and precise 3-d segmentation method for skeletal structures in volumetric ct data. IEEE Transactions on Medical Imaging, 22(5):586–598, 2003.
[9] Palter, Vanessa N and Grantcharov, Teodor P. Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room: a randomized controlled trial. Annals of surgery, 259(3):443–448, 2014.
[10] Rengier, Fabian, Mehndiratta, Amit, Von Tengg-Kobligk, Hendrik, Zechmann, Christian M, Unterhinninghofen, Roland, Kauczor, H-U, and Giesel, Frederik L. 3d printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4):335–341, 2010.
[11] Caponetti, Laura and Fanelli, Anna Maria. Computeraided simulation for bone surgery. IEEE Computer Graphics and Applications, 13(6):86–92, 1993.
[12] Guo, Fan, Tang, Jin, and Peng, Hui. Adaptive estimation of depth map for two-dimensional to three-dimensional stereoscopic conversion. Optical Review, 21(1):60–73, Jan 2014.
[13] Fishman, George. Monte Carlo: concepts, algorithms, and applications. Springer Science & Business Media, 2013.
[14] Viceconti, M, Sudanese, A, Toni, A, and Giunti, A. A software simulation of tibial fracture reduction with external fixator. Computer methods and programs in biomedicine, 40(2):89–94, 1993.
[15] McMenamin, Paul G, Quayle, Michelle R, McHenry, Colin R, and Adams, Justin W. The production of anatomical teaching resources using three-dimensional (3d) printing technology. Anatomical sciences education, 7(6):479– 486, 2014.
[16] CYCAS, E. and PLANTS, T. Safety data sheet, 2013.
[17] Farrior III, Jay B. Home temporal bone dissection: anatomic approaches to ear surgery. Otolaryngology–Head and Neck Surgery, 88(3):310–315, 1980.
[18] Suzuki, Mamoru, Ogawa, Yasuo, Kawano, Atsushi, Hagiwara, Akira, Yamaguchi, Hiroya, and Ono, Hidenori. Rapid prototyping of temporal bone for surgical training and medical education. Acta oto-laryngologica, 124(4):400– 402, 2004.
[19] Schroeder, William J, Martin, Kenneth M, and Lorensen, William E. The design and implementation of an objectoriented toolkit for 3d graphics and visualization. in Proceedings of Seventh Annual IEEE Visualization’96, pp. 93– 100. IEEE, 1996.
[20] Yoo, Terry S. Insight into images: principles and practice for segmentation, registration, and image analysis. AK Peters/CRC Press, 2004.
[21] Pianykh, Oleg S. Medical Images in DICOM, pp. 81–114. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
[22] Cerini, R, Faccioli, N, Barillari, M, De Iorio, M, Carner, M, Colletti, V, and Mucelli, R Pozzi. Bionic ear imaging. La radiologia medica, 113(2):265–277, 2008.
[23] Fox, Lee A, Vannier, Michael W, West, O Clark, Wilson, Anthony J, Baran, Gregg A, and Pilgram, Thomas K. Diagnostic performance of ct, mpr and 3dct imaging in maxillofacial trauma. Computerized medical imaging and graphics, 19(5):385–395, 1995.
[24] Nghiem, HV, Dimas, CT, McVicar, JP, Perkins, JD, Luna, JA, Winter Iii, TC, Harris, A, and Freeny, PC. Impact of double helical ct and three-dimensional ct arteriography on surgical planning for hepatic transplantation. Abdominal imaging, 24(3):278–284, 1999.
[25] Rao, Narayana Dlv, Singh Gulati, Manpreet, Paul, Shashi Bala, Pande, Girish Kumar, Sahni, Peush, and Chattopadhyay, Tushar Kanti. Three-dimensional helical computed tomography cholangiography with minimum intensity projection in gallbladder carcinoma patients with obstructive jaundice: Comparison with magnetic resonance cholangiography and percutaneous transhepatic cholangiography. Journal of gastroenterology and hepatology, 20(2):304–308, 2005.
[26] Peloschek, Philipp, Sailer, Johannes, Weber, Michael, Herold, Christian J, Prokop, Mathias, and SchaeferProkop, Cornelia. Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3d multidetector ct data. Radiology, 243(2):561–569, 2007.
[27] Salvolini, Luca, Secchi, Elisabetta Bichi, Costarelli, Leonardo, and De Nicola, Maurizio. Clinical applications of 2d and 3d ct imaging of the airways—a review. European journal of radiology, 34(1):9–25, 2000.
[28] Diederich, S, Lentschig, M, Overbeck, T, Wormanns, D, and Heindel, W. Detection of pulmonary nodules at spiral ct: comparison of maximum intensity projection sliding slabs and single-image reporting. European radiology, 11(8):1345–1350, 2001.
[29] Sherekar, Rahul Manohar and Pawar, Anand. A MATLAB image processing approach for reconstruction of DICOM images for manufacturing of customized anatomical implants by using rapid prototyping. American Journal of Mechanical Engineering and Automation, 1(5):48–53, 2014.
[30] Wells, William M, Grimson, W Eric L, Kikinis, Ron, and Jolesz, Ferenc A. Adaptive segmentation of mri data. IEEE transactions on medical imaging, 15(4):429–442, 1996.
[31] Sun, Zhonghua. 3d multislice ct angiography in post-aortic stent grafting: a pictorial essay. Korean journal of radiology, 7(3):205–211, 2006.
[32] Nino-Murcia, Matilde, Jeffrey Jr, R Brooke, Beaulieu, Christopher F, Li, King CP, and Rubin, Geoff D. Multidetector ct of the pancreas and bile duct system: value of curved planar reformations. American Journal of Roentgenology, 176(3):689–693, 2001.
[33] Galantucci, Luigi Maria, Percoco, Gianluca, Angelelli, Giuseppe, Lopez, Carlos, Introna, Francesco, Liuzzi, Claudia, and De Donno, Antonio. Reverse engineering techniques applied to a human skull, for cad 3d reconstruction and physical replication by rapid prototyping. Journal of medical engineering & technology, 30(2):102–111, 2006.
[34] Webb, PA. A review of rapid prototyping (rp) techniques in the medical and biomedical sector. Journal of medical engineering & technology, 24(4):149–153, 2000.
[35] Pretorius, E Scott and Fishman, Elliot K. Spiral ct and three-dimensional ct of musculoskeletal pathology: emergency room applications. Radiologic Clinics of North America, 37(5):953–974, 1999.
[36] Calhoun, Paul S, Kuszyk, Brian S, Heath, David G, Carley, Jennifer C, and Fishman, Elliot K. Three-dimensional volume rendering of spiral ct data: theory and method. Radiographics, 19(3):745–764, 1999.