اساس لیزر و کاربرد آن در صنعت روز

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک، دانشگاه فردوسی مشهد

2 فردوسی مشهد*مهندسی مکانیک

3 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به جرأت می‌توان عصر حاضر را عصر تکنولوژی و پیشرفت نامید. یکی از قدرتمندترین و پیشرفته‌ترین حوزه‌های تکنولوژی مربوط به لیزر است. لیزر که تاریخچه آن به اواسط قرن بیستم باز می‌گردد، دستگاهی است که در آن نور در طی واکنش فیزیکی وارونگی جمعیت سه ویژگی مونوکروماتیک، جهت‌مندی و همدوسی به خود می‌گیرد. در این شرایط چگالی انرژی نور افزایش می‌یابد و در نتیجه از آن می‌توان در فرایندهای مختلف استفاده کرد. با توجه به اهمیت لیزر، در گزارش حاضر سعی شد نخست تاریخچه پیدایش لیزر ارائه شود. سپس، هریک از چهار ویژگی مذکور لیزر به دقت ذکر شود. بیان خواهد شد که لیزر از سه جزء دمنده (منبع انرژی خارجی)، محیط فعال و محفظه (رزوناتور اپتیکی) تشکیل شده است که جزئیات هریک نیز به دقت معرفی می‌شود. در ادامه، بیان خواهد شد که امواج خروجی از لیزر می‌تواند به دو صورت پیوسته یا گسسته باشند. برای درک بهتر نیز انواع لیزر متناسب با طول‌موج و نوع محیط فعال معرفی خواهد شد. سپس کاربردهای مختلف لیزر در صنعت شامل فرایندهای نشانه‌گذاری، برش، جوش، تمیزکاری، تولید افزایشی، سخت‌کاری و پوشش‌دهی ارائه می‌شود و در هر مورد نوع لیزر مورد استفاده نیز معرفی می‌شود.

کلیدواژه‌ها


[1] Wells, Herbert George. War of the Worlds. William Heinemann, UK, 1898.
[2] Bertolotti, Mario. The history of the laser. CRC press, 2004.
[3] Billings, Charlene W. Lasers: The New Technology Of Light. Facts on File, 1992.
[4] Siegman, Anthony E. Lasers. University Science Books, Mill Valley, CA, 1986.
[5] Renk, Karl F. Basics of laser physics. Springer, 2017.
[6] Mazumder, Jyotirmoy and Watkins, Kenneth G. Laser Material Processing. Springer-Verlag London, 2010.
[7] Schawlow, Arthur L and Townes, Charles H. Infrared and optical masers. Physical Review, 112(6):1940, 1958.
[8] Ladenburg, R. Research on the anomalous dispersion of gases. Z. Phys, 48:15–25, 1928.
[9] Lamb Jr, Willis E and Retherford, Robert C. Fine structure of the hydrogen atom by a microwave method. Physical Review, 72(3):241, 1947.
[10] Dicke, Robert H. Coherence in spontaneous radiation processes. Physical review, 93(1):99, 1954.
[11] Bloembergen, Nicolaas. Proposal for a new type solid state maser. Physical review, 104(2):324, 1956.
[12] Schawlow, Arthur L and Townes, Charles H. Masers and maser communications system, March 22 1960. US Patent 2,929,922.
[13] Maiman, T. H. Stimulated optical radiation in ruby. Nature, 187(4736):493–494, 1960.
[14] Sorokin, PP and Stevenson, MJ. Stimulated infrared emission from trivalent uranium. Physical Review Letters, 5(12):557, 1960.
[15] Javan, Ali, Bennett Jr, William R, and Herriott, Donald R. Population inversion and continuous optical maser oscillation in a gas discharge containing a he-ne mixture. Physical Review Letters, 6(3):106, 1961.
[16] Hall, Robert N, Fenner, Gunther E, Kingsley, JD, Soltys, TJ, and Carlson, RO. Coherent light emission from GaAs junctions. Physical Review Letters, 9(9):366, 1962.
[17] Geusic, JE, Marcos, HM, and Van Uitert, LeGrand. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Applied Physics Letters, 4(10):182–184, 1964.
[18] Patel, C Kumar N. Continuous-wave laser action on vibrational-rotational transitions of CO2. Physical review, 136(5A):A1187, 1964.
[19] Bridges, William B. Laser oscillation in singly ionized argon in the visible spectrum. Applied Physics Letters, 4(7):128–130, 1964.
[20] Kasper, Jerome VV and Pimentel, George C. Hcl chemical laser. Physical Review Letters, 14(10):352, 1965.
[21] Silfvast, William T, Fowles, Grant R, and Hopkins, BD. Laser action in singly ionized ge, sn, pb, in, cd and zn. Applied Physics Letters, 8(12):318–319, 1966.
[22] Geiges, Michael L. History of lasers in dermatology. in Basics in dermatological laser applications, vol. 42, pp. 1–6. Karger Publishers, 2011.
[23] George, Roy. Laser in dentistry-review. International Journal of Dental Clinics, 1(1), 2009.
[24] Holmström, Sven TS, Baran, Utku, and Urey, Hakan. Mems laser scanners: a review. Journal of Microelectromechanical Systems, 23(2):259–275, 2014.
[25] Gautam, Girish Dutt and Pandey, Arun Kumar. Pulsed nd: Yag laser beam drilling: A review. Optics & Laser Technology, 100:183–215, 2018.
[26] Wang, WC, Zhou, B, Xu, SH, Yang, ZM, and Zhang, QY. Recent advances in soft optical glass fiber and fiber lasers. Progress in Materials Science, 2018.
[27] Hitz, C Breck, Ewing, James J, and Hecht, Jeff. Introduction to laser technology. John Wiley & Sons, 2012.
[28] Hodgson, Norman and Weber, Horst. Optical resonators: fundamentals, advanced concepts, applications, vol. 108. Springer Science & Business Media, 2005.
[29] Svelto, Orazio. Properties of laser beams. in Principles of Lasers, pp. 475–504. Springer, 2010.
[30] Hansch, T, Pernier, M, and Schawlow, A. Laser action of dyes in gelatin. IEEE Journal of Quantum Electronics, 7(1):45–46, 1971.
[31] Steen, W.M. Laser Material Processing. Springer London, 2013.
[32] Kudryashov, Alexis V and Weber, Horst. Laser resonators: novel design and development. SPIE press, 1999.
[33] Hall, Dennis. The physics and technology of laser resonators. CRC Press, 1990.
[34] Hoppius, Jan S, Maragkaki, Stella, Kanitz, Alexander, Gregorčič, Peter, and Gurevich, Evgeny L. Optimization of femtosecond laser processing in liquids. Applied Surface Science, 467:255–260, 2019.
[35] Joffe, Stephen N and Oguro, Yanao. Advances in Nd: YAG laser surgery. Springer Science & Business Media, 2012.
[36] Duarte, Frank J. Tunable laser applications. CRC press, 2016.
[37] Abramczyk, Halina. Introduction to laser spectroscopy. Elsevier, 2005.
[38] Beesley, Michael John. Lasers and their applications. Taylor and Francis, 1971.
[39] Gao, Wenyan, Xue, Yafei, Li, Guang, Chang, Chang, Li, Benhai, Hou, Zhenxing, Li, Kai, and Wang, Junlong. Investigations on the laser color marking of tc4. Optik, 182:11–18, 2019.
[40] Shimokawa, Kiyofumi. Laser marking method, July 11 1989. US Patent 4,847,181.
[41] Tam, SC, Williams, R, Yang, LJ, Jana, S, Lim, Lennie EN, and Lau, Michael WS. A review of the laser processing of aircraft components. Journal of materials processing technology, 23(2):177–194, 1990.
[42] Ogrodnik, PJ, Moorcroft, CI, and Wardle, Peter. The effects of laser marking and symbol etching on the fatigue life of medical devices. Journal of medical engineering, 2013, 2013.
[43] Veiko, V, Odintsova, G, Vlasova, E, Andreeva, Ya, Krivonosov, A, Ageev, E, and Gorbunova, E. Laser coloration of titanium films: New development for jewelry and decoration. Optics & Laser Technology, 93:9–13, 2017.
[44] Krajcarz, Daniel. Comparison metal water jet cutting with laser and plasma cutting. Procedia Engineering, 69:838– 843, 2014.
[45] Kagawa, Yutaka, Utsunomiya, Shin, and Kogo, Yasuo. Laser cutting of CVD-SiC fibre/A6061 composite. Journal of materials science letters, 8(6):681–683, 1989.
[46] Muhammad, N, Whitehead, D, Boor, A, and Li, L. Comparison of dry and wet fibre laser profile cutting of thin 316l stainless steel tubes for medical device applications. Journal of Materials Processing Technology, 210(15):2261– 2267, 2010.
[47] Shin, Jae Sung, Oh, Seong Yong, Park, Hyunmin, Chung, Chin-Man, Seon, Sangwoo, Kim, Taek-Soo, Lee, Lim, and Lee, Jonghwan. Laser cutting of steel plates up to 100 mm in thickness with a 6-kw fiber laser for application to dismantling of nuclear facilities. Optics and Lasers in Engineering, 100:98–104, 2018.
[48] Heisel, Torben, Schou, Jørgen, Christensen, Svend, and Andreasen, C. Cutting weeds with a CO2 laser. Weed research, 41(1):19–29, 2001.
[49] Cao, Xin-jin, Jahazi, M, Immarigeon, JP, and Wallace, W. A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology, 171(2):188– 204, 2006.
[50] Amanat, Negin, Chaminade, Cedric, Grace, John, McKenzie, David R, and James, Natalie L. Transmission laser welding of amorphous and semi-crystalline poly-ether– ether–ketone for applications in the medical device industry. Materials & design, 31(10):4823–4830, 2010.
[51] Tsirkas, SA, Papanikos, P, and Kermanidis, Th. Numerical simulation of the laser welding process in butt-joint specimens. Journal of materials processing technology, 134(1):59–69, 2003.
[52] Veiko, VP, Mutin, T Ju, Smirnov, VN, Shakhno, EA, and Batishche, SA. Laser cleaning of metal surfaces: physical processes and applications. in Fundamentals of laser assisted micro-and nanotechnologies, vol. 6985, p. 69850D. International Society for Optics and Photonics, 2008.
[53] Gaetani, Carolina and Santamaria, Ulderico. The laser cleaning of wall paintings. Journal of Cultural Heritage, 1:S199–S207, 2000.
[54] Siano, Salvatore and Salimbeni, Renzo. Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach. Accounts of chemical research, 43(6):739–750, 2010.
[55] Gu, DD, Meiners, Wilhelm, Wissenbach, Konrad, and Poprawe, Reinhart. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International materials reviews, 57(3):133–164, 2012.
[56] Gebhardt, Andreas. Understanding additive manufacturing. 2011.
[57] Frazier, William E. Metal additive manufacturing: a review. Journal of Materials Engineering and Performance, 23(6):1917–1928, 2014.
[58] Ganeev, R.A. Low-power laser hardening of steels. Journal of Materials Processing Technology, 121(2):414 – 419, 2002.
[59] Lima, Milton Sergio Fernandes de, Goia, Flávia Aline, Riva, Rudimar, and Espírito Santo, Ana Maria do. Laser surface remelting and hardening of an automotive shaft sing a high-power fiber laser. Materials Research, 10:461 – 467, 12 2007.
[60] Slatter, T., Taylor, H., Lewis, R., and King, P. The influence of laser hardening on wear in the valve and valve seat contact. Wear, 267(5):797 – 806, 2009. 17th International Conference on Wear of Materials.
[61] Dinesh Babu, P., Balasubramanian, K.R., and Buvanashekaran, G. Laser surface hardening: a review. International Journal of Surface Science and Engineering, 5(2-3):131–151, 2011. PMID: 41398.
[62] Toyserkani, Ehsan, Khajepour, Amir, and Corbin, Stephen F. Laser cladding. CRC press, 2004.
[63] Sexton, L., Lavin, S., Byrne, G., and Kennedy, A. Laser cladding of aerospace materials. Journal of Materials Processing Technology, 122(1):63 – 68, 2002.
[64] Shepeleva, L., Medres, B., Kaplan, W.D., Bamberger, M., and Weisheit, A. Laser cladding of turbine blades. Surface and Coatings Technology, 125(1):45 – 48, 2000.
[65] Kathuria, Y.P. Some aspects of laser surface cladding in the turbine industry. Surface and Coatings Technology, 132(2):262 – 269, 2000.