مروری بر سامانه‌های دینامیکی خودرو و کاربرد ریزچرخش‌سنج در آن‌ها

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد سیستم های دینامیکی، دانشکده خودرو، دانشگاه علم و صنعت ایران

2 رئیس دانشکده و پژوهشکده خودرو، دانشگاه علم و صنعت ایران

3 عضو هیئت علمی دانشکده خودرو، دانشگاه علم و صنعت ایران

چکیده

امروزه بسیاری از سامانه‌های گوناگون برای بالابردن کارایی و کیفیت خودروهای نوین بکار گرفته می‌شوند، که بیشتر آن‌ها در زمره رویکردهای فعال قرار دارند. پیادهسازی رویکرد فعال نیازمند بکارگیری حسگرهای مناسب است، ازین رو طراح باید به شناخت مناسبی در هر دو زمینه دست یابد. واپایش الکترونیکی پایداری، سامانه واپایش کشش و برنامه پایداری الکترونیکی از دسته این سامانه‌ها هستند. از دیدگاه مدلسازی در هر مدل ریاضی خودرو (یا سامانه‌های دینامیکی وابسته آن) هرگاه ورودی مدل شامل سرعت یا شتاب زاویه‌ای باشد، آنگاه برای پیاده سازی مدل نیاز به ژیروسکوپ خواهد بود. مقاله پیش‌رو نخست با معرفی سامانه‌های دینامیکی خودرو و بررسی برخی از مدل‌های متداول این سامانه‌‌ها، نخست جایگاه ژیروسکوپ در خودرو را بررسی می‌کند، سپس با معرفی و ارزیابی ژیروسکوپ‌های MEMS و شناسه‌های کارایی‌شان، بازه مناسب این شناسه‌ها را برای کاربرد در خودرو بدست می‌دهد. چارچوب کاری این مقاله برای پاسخ‌گویی به دو پرسش بنیادین نهاده شده است؛ نخست، چه سامانه‌های خودرویی نیازمند ژیروسکوپ هستند؟ دوم، برای این کاربردهای خودرویی چه نوع ژیروسکوپ‌هایی مناسب اند؟

کلیدواژه‌ها


[1] Rowell, Derek. State-space system representation of LTI systems. http://web.mit.edu/2.14/www/Handouts/ StateSpace.pdf, 2002.
[2] Mashadi, Behrooz and Crolla, David. Vehicle powertrain systems. Wiley, 2012.
[3] Liebemann, EK, Meder, K, Schuh, J, and Nenninger, G. Safety and performance enhancement: The bosch electronic stability control (esp). tech. rep., SAE Technical Paper, 2004.
[4] Braghin, Francesco, Cheli, Federico, Corradi, Roberto, Tomasini, GISELLA, and Sabbioni, Edoardo. Active antirollover system for heavy-duty road vehicles. Vehicle System Dynamics, 46(S1):653–668, 2008.
[5] Parsons, Keith GR, Pask, Mark, and Burdock, William. The development of ace for discovery ii. tech. rep., SAE Technical Paper, 2000.
[6] Nuessle, Marcus, Rutz, Ruediger, Leucht, Matthias, Nonnenmacher, Markus, and Volk, Hardy. Objective test methods to assess active safety benefits of esp. in 20th International Technical Conference on the Enhanced Safety of Vehicles. Citeseer, 2007.
[7] Reze, M and Osajda, M. Mems sensors for automotive vehicle stability control applications. in Mems for Automotive and Aerospace Applications, pp. 29–53. Elsevier, 2013.
[8] Dang, Jennifer N. Preliminary results analyzing the effectiveness of electronic stability control (esc) systems. tech. rep., US Department of Transportation, National Highway Traffic Safety Administration, 2004.
[9] Van Zanten, Anton T. Bosch esp systems: 5 years of experience. tech. rep., SAE Technical Paper, 2000.
[10] Katzourakis, Diomidis Ioannis and Katzourakis, Antonis Ioannis. Scaled test bed for automotive experiments: Evaluation of single accelerometer electronic stability control. in Advanced Microsystems for Automotive Applications 2008, pp. 239–257. Springer, 2008.
[11] Ferraresi, Marco and Pozzi, Stefano. Mems sensors for nonsafety automotive applications. in Advanced Microsystems for Automotive Applications 2009, pp. 355–367. Springer, 2009.
[12] Sugawara, Toshiharu, Altmannshofer, Heiko, and Kakegawa, Shinji. Applications of road edge information for advanced driver assistance systems and autonomous driving. in Advanced Microsystems for Automotive Applications 2017, pp. 71–86. Springer, 2018.
[13] Barton, Andrew Dennis, Farrelly, James Owen Patrick, and Alford, Nicholas. Oversteer steering assistance controller, May 17 2005. US Patent 6,895,318.
[14] Meyer, Gereon, Valldorf, Jurgen, and Gessner, Wolfgang. Advanced Microsystems for Automotive Applications 2009. Springer, 2009.
[15] Sentilles, Séverine, Vulgarakis, Aneta, Bureš, Tomáš, Carlson, Jan, and Crnković, Ivica. A component model for control-intensive distributed embedded systems. in International Symposium on Component-Based Software Engineering, pp. 310–317. Springer, 2008.
[16] Group, The P2700 Working. Ieee standard for sensor performance. Brochure, 2014.
[17] Acar, Cenk and Shkel, Andrei. MEMS vibratory gyroscopes: structural approaches to improve robustness. Springer Science & Business Media, 2008.
[18] Iyer, Sitaraman V. Modeling and simulation of nonidealities in a z-axis cmos-mems gyroscope. tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF ELECTRICAL AND COMPUTER ENGINEERING, 2003.
[19] Dreyer, Antonie Christoffel. Modelling of MEMS vibratory gyroscopes utilizing phase detection. Ph.D. thesis, Stellenbosch: University of Stellenbosch, 2008.
[20] Yongpeng, Wen and Huilin, Shang. Modeling and simulation for a vibratory tuning-fork mems gyroscope. in 2011 Third International Conference on Measuring Technology and Mechatronics Automation, vol. 2, pp. 605–608. IEEE, 2011.
[21] Lee, Feng-Yu, Liang, Kai-Chih, Cheng, Emerson, and Fang, Weileun. Design and implementation of a fullydecoupled tuning fork (fdtf) mems vibratory gyroscope for robustness improvement. in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1160–1163. IEEE, 2015.
[22] Senkal, Doruk, Efimovskaya, Alexandra, and Shkel, Andrei M. Dual foucault pendulum gyroscope. in 2015 Transducers-2015 18th International Conference on SolidState Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1219–1222. IEEE, 2015.
[23] Zhou, Bin, Zhang, Tian, Yin, Peng, Chen, Zhiyong, Song, Mingliang, and Zhang, Rong. Innovation of flat gyro: Center support quadruple mass gyroscope. in 2016 IEEE International Symposium on Inertial Sensors and Systems, pp. 42–45. IEEE, 2016.
[24] Zhang, Tian, Zhou, Bin, Yin, Peng, Chen, Zhiyong, and Zhang, Rong. Optimal design of a center support quadruple mass gyroscope (csqmg). Sensors, 16(5):613, 2016.
[25] Shkel, Andrei M. Type i and type ii micromachined vibratory gyroscopes. in 2006 IEEE/ION Position, Location, And Navigation Symposium, pp. 586–593. IEEE, 2006.
[26] Reze, M and Osajda, M. Mems sensors for automotive vehicle stability control applications. in Mems for Automotive and Aerospace Applications, pp. 29–53. Elsevier, 2013.
[27] Chen, Fang, Chang, Honglong, Yuan, Weizheng, Wilcock, Reuben, and Kraft, Michael. Parameter optimization for a high-order band-pass continuous-time sigma-delta modulator mems gyroscope using a genetic algorithm approach. Journal of micromechanics and microengineering, 22(10):105006, 2012.
[28] Liu, Kai, Zhang, Weiping, Chen, Wenyuan, Li, Kai, Dai, Fuyan, Cui, Feng, Wu, Xiaosheng, Ma, Gaoyin, and Xiao, Qijun. The development of micro-gyroscope technology. Journal of Micromechanics and Microengineering, 19(11):113001, 2009.
[29] Tilli, Markku, Paulasto-Krockel, Mervi, Motooka, Teruaki, and Lindroos, Veikko. Handbook of silicon based MEMS materials and technologies. William Andrew, 2015.
[30] Dixon, Richard and Bouchaud, Jérémie. Prospects for mst sensors in automotive applications. in Advanced Microsystems for Automotive Applications 2006, pp. 3–12. Springer, 2006.
[31] Way, O. T. and Writer. Gyroscope catalogue adxrs300. Brochure, 2017.
[32] Efimovskaya, A, Senkal, D, and Shkel, AM. Miniature origami-like folded mems timu. in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 584– 587. IEEE, 2015.
[33] Sigmund, Ole. Systematic design of electrothermomechanical microactuators using topology optimization. Modelling and simulation of microsystems, semiconductors, sensors and actuators, pp. 1492–1500, 1998.
[34] Yin, Tao, Wu, Huanming, Wu, Qisong, Yang, Haigang, and Jiao, Jiwei. A tia-based readout circuit with temperature compensation for mems capacitive gyroscope. in 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 401–405. IEEE, 2011.
[35] Klein, Lawrence A and Klein, Lawrence A. Sensor and data fusion: a tool for information assessment and decision making, vol. 324. SPIE press Bellingham, 2004.