توسعه تکنیک‌های مداوم به منظور اصلاح فرایند فشردن در کانال همسان زاویه‌دار

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشگاه بیرجند

2 دانشگاه صنعتی شاهرود

چکیده

یکی از موثرترین تکنیک های روش تغییرشکل پلاستیک شدید به منظور ایجاد ساختار فوق ریزدانه در مواد، تکنیک فشردن در کانال همسان زاویه دار یا (ایکپ) می باشد. در دو دهه گذشته شاهد تحولات زیادی در نحوه ی طراحی قالب و ایجاد تغییرات در تکنیک ایکپ بوده ایم. در مقاله حاضر به توصیف انواع مختلفی از تکنیک های ایکپ که اخیرا توسعه یافته و درصدد حل مشکلات فرایند ایکپ سنتی بوده؛ پرداخته شده است. همچنین نگاه ویژه ای به استفاده از تکنیک فشردن در کانال همسان زاویه دار به صورت مداوم یا ایکپ-کانفرم (ECAP-Conform) در ایجاد ساختار فوق ریزدانه شده است. این تکنیک در واقع ترکیبی از تکنیک فشردن در کانال همسان زاویه دار یا ایکپ و فرایند کانفرم می باشد؛ که به عنوان یک راه حل برای تولید مداوم مواد ریزساختار ارائه شده است. نتایج نشان دهنده موثر بودن استفاده از این تکنیک در تولید مواد ریزدانه به عنوان روش تغییرشکل پلاستیک شدید و حذف محدودیت های موجود در تکنیک ایکپ می باشد.

کلیدواژه‌ها

موضوعات


[1] Wei, Wei, Zhang, Wei, Wei, Kun Xia, Zhong, Yi, Cheng, Gang,andHu,Jing.Finiteelementanalysisofdeformation behaviorincontinuousecapprocess. MaterialsScienceand Engineering: A, 516(1-2):111–118, 2009.  
[2] Valiev,RuslanZ,Estrin,Yuri,Horita,Zenji,Langdon,Terence G, Zechetbauer, Michael J, and Zhu, Yuntian T. Producing bulk ultrafine-grained materials by severe plastic deformation. Jom, 58(4):33–39, 2006.
 [3] Iwahashi, Y, Horita, Z, Nemoto, M, and Langdon, TG. Aninvestigationofmicrostructuralevolutionduringequalchannel angular pressing. Acta materialia, 45(11):4733– 4741, 1997.
[4] Segal, VM, Reznikov, VI, Dobryshevshiy, AE, and Kopylov,VI. Plasticworkingofmetalsbysimpleshear. Russian Metallurgy (Metally), (1):99–105, 1981.
[5] Nakashima,Kiyotaka,Horita,Zenji,Nemoto,Minoru,and Langdon, Terence G. Development of a multi-pass facility for equal-channel angular pressing to high total strains. Materials Science and Engineering: A, 281(1-2):82–87, 2000.
[6] Raab,GeorgyJ,Valiev,RuslanZ,Lowe,TerryC,andZhu, Yuntian T. Continuous processing of ultrafine grained al by ecap–conform. Materials Science and Engineering: A, 382(1-2):30–34, 2004.
 [7] Prell, Michaela, Xu, Cheng, andLangdon, TerenceG. The evolution of homogeneity on longitudinal sections during processing by ecap. Materials Science and Engineering: A, 480(1-2):449–455, 2008.
[8] Xu, Cheng, Schroeder, Steven, Berbon, Patrick B, and Langdon, Terence G. Principles of ecap–conform as a continuousprocessforachievinggrainrefinement: Application to an aluminum alloy. Acta Materialia, 58(4):1379–1386, 2010.
 [9] Alkorta, Jon, Rombouts, Marleen, De Messemaeker, Joke, Froyen, Ludo, and Sevillano, Javier Gil. On the impossibilityofmulti-passequal-channelangulardrawing. Scripta materialia, 47(1):13–18, 2002.
[10] Saito, Y. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (arb) process. Scripta Mater., 39(9):1221–1227, 1998.
 [11] Huang,JY,Zhu,YT,Jiang,H,andLowe,TC. Microstructures and dislocation configurations in nanostructured cu processedbyrepetitivecorrugationandstraightening.Acta Materialia, 49(9):1497–1505, 2001.
[12] Segal, Vladimir M. Engineering and commercialization of equal channel angular extrusion (ecae). Materials Science and Engineering: A, 386(1-2):269–276, 2004.
[13] Nishida, Yoshinori, Arima, Hiroaki, Kim, Jin-Chun, and Ando, Teiichi. Rotary-die equal-channel angular pressing of an al–7 mass% si–0.35 mass% mg alloy. Scripta Materialia, 45(3):261–266, 2001.
[14] Ma, Aibin, Suzuki, Kazutaka, Nishida, Yoshinori, Saito, Naobumi, Shigematsu, Ichinori, Takagi, Makoto, Iwata, Hiroyuki, Watazu, Akira, and Imura, Toru. Impact toughness of an ultrafine-grained al–11mass% si alloy processed by rotary-die equal-channel angular pressing. Acta Materialia, 53(1):211–220, 2005.
[15] Ma, Aibin, Suzuki, Kazutaka, Saito, Naobumi, Nishida, Yoshinori, Takagi, Makoto, Shigematsu, Ichinori, and Iwata, Hiroyuki. Impact toughness of an ingot hypereutectic al–23 mass% si alloy improved by rotary-die equalchannelangular pressing. Materials Science and Engineering: A, 399(1-2):181–189, 2005.
[16] Ma, Aibin, Nishida, Yoshinori, Suzuki, Kazutaka, Shigematsu, Ichinori, and Saito, Naobumi. Characteristics of plastic deformation by rotary-die equal-channel angular pressing. Scripta Materialia, 52(6):433–437, 2005.
 [17] Pourbashiri, Mojtaba, Sedighi, Mohammad, Poletti, Cecilia, and Sommitsch, Christof. Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method. International Journal of Materials Research, 108(9):741–749, 2017.
 [18] Azushima, Akira and Aoki, Koshiro. Properties of ultrafine-grained steel by repeated shear deformation of side extrusion process. Materials Science and Engineering: A, 337(1-2):45–49, 2002. [19] Raab, GI. Plastic flow at equal channel angular processing in parallel channels. Materials Science and Engineering: A, 410:230–233, 2005.
[20] Nakashima,Kiyotaka,Horita,Zenji,Nemoto,Minoru,and Langdon, Terence G. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta materialia, 46(5):1589–1599, 1998.
 [21] Lee, Jae-Chul, Shu, Jin-Yoo, and Ahn, Jae Pyung. Work-softening behavior of the ultrafine-grained al alloy processed by high-strain-rate, dissimilar-channel angular pressing. Metallurgical and Materials Transactions A, 34(3):625–632, 2003.
 [22] Utsunomiya, H, Hatsuda, K, Sakai, T, and Saito, Y. Continuousgrainrefinementofaluminumstripbyconshearing. Materials Science and Engineering: A, 372(1-2):199–206, 2004. [23] Etherington, C. Conform—a new concept for the continuous extrusion forming of metals. Journal of Engineering for Industry, 96(3):893–900, 1974.
 [24] Xu, Shubo, Zhao, Guoqun, Ren, Xufang, and Guan, Yanjin. Numerical investigation of aluminum deformation behavior in three-dimensional continuous confined strip shearing process. Materials Science and Engineering: A, 476(1-2):281–289, 2008.
 [25] Cho, JR and Jeong, HS. Parametric investigation on the curling phenomenon in conform process by threedimensional finite element analysis. Journal of Materials Processing Technology, 110(1):53–60, 2001.
[26] Raab, GeorgyI,Valiev, Ruslan, Gunderov, Dmitriy, Lowe, Terry C, Misra, Amit, and Zhu, Yun Tian. Long-length ultrafine-grainedtitaniumrodsproducedbyecap-conform. in Materials Science Forum, vol. 584, pp. 80–85. Trans Tech Publ, 2008.
 [27] Murashkin, Maxim, Medvedev, Andrey, Kazykhanov, Vil, Krokhin, Alexander, Raab, Georgy, Enikeev, Nariman, and Valiev, Ruslan Z. Enhanced mechanical properties and electrical conductivity in ultrafine-grained al 6101 alloy processed via ecap-conform. Metals, 5(4):2148–2164, 2015.
 [28] Ayati, Vahid, Parsa, Mohammad Habibi, and Mirzadeh, Hamed. Deformation of pure aluminum along the groove path of ecap-conform process. Advanced Engineering Materials, 18(2):319–323, 2016.
 [29] Murashkin, M Yu, Medvedev, AE, Kazykhanov, VU, Raab, GI, Ovid’ko, IA, and Valiev, RZ. Microstructure, strength, electrical conductivity and heat resistance of an al-mg-zr alloy after ecap-conform and cold drawing. Reviews on Advanced Materials Science, 47, 2016.