مطالعه ای بر خواص و کاربرد انواع غشاها در سیستم های الکتروشیمیایی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

یکی از روش‌های نوین برای تولید جریان الکتریکی استفاده از پیل‌های سوختی می‌باشد. یکی از اجزای اصلی پیل های سوختی غشا پلیمری با مزیت هایی شامل: دمای عملکرد پایین، دانسیته توان بالا و عدم ایجاد آلایندگی و سر و صدا، غشا است که وظیفه اصلی آن عبور دادن یون و عدم عبور الکترون و سوخت می باشد؛ اما کاربرد غشاها تنها محدود به پیل های سوختی نبوده و از این رو غشاهای متفاوتی وجود دارند که هر کدام دارای مزایا و معایبی بوده و هریک برای کاربردی خاص مناسب می باشد. در این مطالعه انواع غشاهای نافیونی، مایع و سرامیکی به همراه کاربردهای آنها مورد مطالعه قرار گرفته شده و روش‌های کاربردی برای ارتقای عملکرد غشاهای مایع و نافیونی بررسی شده است. نتایج این مطالعه نشان دادند که استفاده از مایعات یونی غیر فرار، استفاده از نافیون با غلظت مناسب در الکترود با توجه به مقدار پلاتینیوم به‌کار رفته در آن می‌تواند عملکرد غشاهای نافیونی را ارتقا دهد و همچنین استفاده از غشاهای هیبریدی نیاز به مدیریت آب و مرطوب نگه‌داشتن غشا را کم می‌کند. استفاده از آنزیم‌های نظیر BCA و SspCAنیز می‌تواند عملکرد غشاهای مایع را برای عبور گاز کربن‌دی‌اکسید به‌صورت چشمگیری ارتقا بخشد.

کلیدواژه‌ها

موضوعات


[1] Hara, Masanori, Inukai, Junji, Bae, Byungchan, Hoshi, Takayuki, Miyatake, Kenji, Uchida, Makoto, Uchida, Hiroyuki, and Watanabe, Masahiro. Microraman study on water distribution inside a nafion membrane during operation of polymer electrolyte fuel cell. Electrochimica Acta, 82:277–283, 2012.

[2] Hernández-Fernández, FJ, de los Ríos, A Pérez, Mateo-Ramírez, F, Godínez, C, Lozano-Blanco, LJ, Moreno, JI, and Tomás-Alonso, F. New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chemical Engineering Journal, 279:115–119, 2015.

[3] Hickner,MichaelA,Ghassemi,Hossein,Kim,YuSeung,Einsla,BrianR,andMcGrath,JamesE. Alternative polymer systems for proton exchange membranes (pems). Chemical reviews, 104(10):4587– 4612, 2004.

[4] Jeong, Yeongmi, Lee, Sanghyup, Hong, Seungkwan, and Park, Chanhyuk. Preparation, characterization and application of low-cost pyrophyllitealumina composite ceramic membranes for treating low-strength domestic wastewater. Journal of membrane science, 536:108–115, 2017.

[5] Uchytil, Petr, Setnickova, Katerina, Tseng, HuiHsin, Sima, Vladimir, and Petrickovic, Roman. Description of the gas transport through dynamic liquid membrane. Separation and Purification Technology, 184:152–157, 2017.

[6] Akhmetshina,AlsuI,Gumerova,OlesyaR,Atlaskin, ArtemA,Petukhov, AntonN,Sazanova, TatyanaS, Yanbikov, Nail R, Nyuchev, Alexander V, Razov, Evgeny N, and Vorotyntsev, Ilya V. Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Separation and Purification Technology, 176:92–106, 2017.

[7] Deng, Xianrui, Liu, Guoping, Wang, George, and Tan, Min. Modeling and identification of a pem fuel cell humidification system. Journal of Control Theory and Applications, 7(4):373, 2009.

[8] Cahalan, T, Rehfeldt, S, Bauer, M, Becker, M, and Klein, H. Experimental set-up for analysis of membranes used in external membrane humidification of pem fuel cells. International Journal of Hydrogen Energy, 41(31):13666–13677, 2016.

[9] Majsztrik, Paul William. Mechanical and Transport Properties of Nafion for PEM Fuel Cells: Temperature and Hydration Effects. Princeton University Princeton, NJ, 2008.

[10] Lee, Jong-Won, Yi, Cheol-Woo, and Kim, Keon. The electrochemical properties of the porous nafion membrane for proton exchange membrane fuel cells (pemfcs). Bulletin of the Korean Chemical Society, 33(5):1788–1790, 2012.

 [11] Dicks, AL. Pem fuel cells-applications. 2012.

[12] Gerasimova, Ekaterina, Safronova, Ekaterina, Ukshe, Aleksander, Dobrovolsky, Yury, and Yaroslavtsev, Andrey. Electrocatalytic and transport properties of hybrid nafion® membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells. Chemical Engineering Journal, 305:121–128, 2016.

[13] Sone, Yoshitsugu, Ekdunge, Per, and Simonsson, Daniel. Proton conductivity of nafion 117 as measured by a four-electrode ac impedance method. Journal of the Electrochemical Society, 143(4):1254– 1259, 1996.

[14] Sasikumar, G, Ihm, JW, and Ryu, H. Optimum nafion content in pem fuel cell electrodes. Electrochimica Acta, 50(2-3):601–605, 2004.

[15] Jiang, Dongsheng, Bu, Xueqin, Sun, Bing, Lin, Guiping, Zhao, Hongtao, Cai, Yan, and Fang, Ling. Experimental study on ceramic membrane technologyforonboardoxygengeneration. Chinese Journal of Aeronautics, 29(4):863–873, 2016.

[16] Yang, Yanhui, Liu, Qianqian, Wang, Haizhi, Ding, Fusheng, Jin, Guoshan, Li, Chunxi, and Meng, Hong. Superhydrophobic modification of ceramic membranes for vacuum membrane distillation. Chinese Journal of Chemical Engineering, 25(10):1395– 1401, 2017.

[17] Yang, Yanhui, Liu, Qianqian, Wang, Haizhi, Ding, Fusheng, Jin, Guoshan, Li, Chunxi, and Meng, Hong. Superhydrophobic modification of ceramic membranes for vacuum membrane distillation. Chinese Journal of Chemical Engineering, 25(10):1395– 1401, 2017.

 [18] Kamiński, W and Kwapiński, W. Applicability of liquid membranes in environmental protection. Polish Journal of environmental studies, 9(1):37–43, 2000.

[19] Abdelrahim, M Yahia M, Martins, Carla F, Neves, Luísa A, Capasso, Clemente, Supuran, Claudiu T, Coelhoso, Isabel M, Crespo, João G, and Barboiu, Mihail. Supported ionic liquid membranes immobilized with carbonic anhydrases for co2 transport at high temperatures. Journal of membrane science, 528:225–230, 2017.