تحلیل انرژی بار سرمایشی ساختمان با استفاده از سایبان و عایق حرارتی در سه اقلیم گرم، معتدل و سرد ایران

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشگاه آزاد اسلامی واحد دماوند

2 دانشگاه علم و صنعت ایران

چکیده

امروزه برای فراهم کردن آﺳﺎﻳﺶ در ﺳﺎﺧﺘﻤﺎنﻫﺎ انرژی زیادی صرف می‌شود که ضروریست ﻣﻴﺰان اﻧﺮژی ﻣﺼﺮﻓﻲ ﺳﻨﺠﻴﺪه و راهکارهای مناسب جهت کاهش مصرف اﻧﺮژی ارایه گردد. ﻳﻜﻲ از راهﻫﺎی ﺑدﺳﺖ آوردن ﻣﻘـﺪار انرژی مصرفی جهت ایجاد آسایش، اﺳـﺘﻔﺎده از ﺑﺮﻧﺎﻣـه‌ﻫـﺎی ﺷﺒﻴﻪ‌ﺳﺎزی ﻣﺼﺮف اﻧﺮژی ساختمان مانند انرژی‌پلاس و دیزاین‌بیلدر ﻣﻲﺑﺎﺷﺪ. در این مقاله یک مدل واقعی انتخاب و با استفاده از نرم‌افزار دیزاین‌بیلدر میزان انرژی مصرفی جهت بار سرمایش آن در سه شهر اهواز، تهران و تبریز بر اساس دو راهبرد مختلف شبیه‌سازی شده و میزان تاثیرات انها بر مصرف انرژی الکتریکی در روز 1 جولای مورد بررسی و مقایسه قرار گرفته است. راهبرد اول استفاده از معادله انتقال حرارت تشعشعی و کاهش سطح مقطع تابیده شده ساختمان با بکارگیری سایبان با عمق‌های مختلف (6 حالت) است و راهبرد دوم بکارگیری معادله فوریه می‌باشد که با استفاده از عایق حرارتی با ضخامت‌های متفاوت (5 حالت) میزان کاهش شار حرارتی ساختمان محاسبه شده است. نتایج نشان داد که برای شهر اهواز و تهران راهبرد دوم با اختلاف زیادی بر راهبرد اول ارجحیت دارد ولی در شهر تبریز اختلاف دو راهبرد کم می‌باشد. همچنین نتایج شهر اهواز نشان داد که تصور ما در کاهش مصرف انرژی با استفاده از سایبان غالبا صحیح نمی‌باشد و کاربرد عایق حرارتی حتی با ضخامت یک سانتیمتر تاثیر خوبی در کاهش مصرف انرژی دارد.

کلیدواژه‌ها

موضوعات


[1] A. F. Maryanczykai, J. Schnotale, J. Radonb K. Was. ExperimentalmeasurementsandCFDsimulationofaground sourceheat exchanger operating at a cold climate for a passive houseventilation system. Energy and Buildings, 68:562–570, 2014.
 [2] PrimaryEnergyConsumptionbySourceandSector.http: //www.eia.gov/totalenergy/data/annua. Accessed on 10 July 2015.
[3] N. Fumo, P. Mago, R. Luck. Methodology to estimate buildingenergyconsumptionusingEnergyPlusBenchmark Models. Energy and Buildings, 42:2331–2337, 2010.
 [4] J. Cho, J. Yang, W. Park. Evaluation of air distribution system’s airflow performance for coolingenergy savings in high-density data centers. Energy and Buildings, 68:270– 279, 2014.
[5] M. Weißenbergera, W. Jensch, W. Lang. The convergence of life cycle assessment and nearly zero-energybuildings: The case of Germany. Energy and Buildings, 76:551–557, 2014.
[6] V. Sulakatko, I. Lill, E. Liisma. Analysis of on-site construction processes for effective external thermal insulation composite system (ETICS) installation. ScienceDirect, Procedia Economics and Finance, 21:297–305, 2015.
[7] A. Guillaume, R. Zytek. International monetary fund islamic republic of iran. International Monetary Fund, (10/76), Washington, D.C./United States, 2010.
[8] Fund, I. M. Article IV Consultation-Staff Report, press release, and statement by the executive director for the islamic republic of iran. International Monetary Fund, (14/93), 2014.
[9] M. Maasoumy, M. Razmara, M. Shahbakhti A. S. Vincentelli. Handling model uncertainty in model predictive controlforenergyefficientbuildings. Energy and Buildings, 77:377–392, 2014.
[10] A.R.Rempel, A.W.Rempel, K.V.CashmanK.N.Gates C. J. Page B. Shawe. Interpretation of passive solar field data with EnergyPlus models: Un-conventional wisdom from four sunspaces in Eugene, Oregon. Building and Environment, 60:158–172, 2013.
[11] D. S. Lee, J. H. Jo, S. H. Koo B. Y. Lee. Development of climateindicesusinglocalweatherdataforshadingdesign. sustainability, 7:1884–1899, 2015.
[12] P. Biddulpha, V. Gori, C. A. Elwell C. Scott C. Rye R. Lowe T. Oreszczyn. Inferring the thermal resistance and effective thermal mass of a wallusing frequent temperature andheatfluxmeasurements. Energy and Buildings, 78:10– 16, 2014.
 [13] M.M.Mahdy,M.Nikolopoulou. Evaluationoffenestration specificationsinEgyptintermsofenergyconsumptionand longtermcost-effectiveness. EnergyandBuildings,69:329– 343, 2014.
[14] J. Joe, W. Choi, H. Kwon J. H. Huh. Load characteristics and operation strategies of building integrated with multistory double skin façade. Energy and Buildings, 60:609– 619, 2013.
[15] E.d.Angelis,E.Serra. Lightsteel-framewalls: thermalinsulation performances and thermal bridges. ScienceDirect, Energy Procedia, 45:362–371, 2014.
[16] Y. Kharkin, E. Korol, A. Davidyuk. Technology for erectingsandwichexternalwallswithheatinsulationlayermade of low conductivity concrete. ScienceDirect, Procedia Engineering, 117:172–178, 2015.
[17] Yao, J. Current status and energy savings potential of solar shading in Ningbo. World Academy of Science, Engineering and Technology, 5:975–978, 2011.
[18] J. Yao, C.Yan. Evaluation of The energy performance of shading devices based on incremental costs. World Academy of Science, Engineering and Technology, 5:494– 496, 2011.
[19] Yao, J. An investigation of adjustment of solar shading devices in office buildings. World Academy of Science, Engineering and Technology, 5:151–153, 2011.
[20] W. O’Brien, K. Kapsis, A. K. Athienitis. Manuallyoperated window shade patterns in office buildings. Building and Environment, 60:319–338, 2013.
[21] T. Parhizgar, H. Jafarian, Y. Kialashki Y. Sabohi. Optimaldesignofamoveablesolarshadingonofficeroomwith electricitygeneration. Iran’s energy, 15(1):81–96, 2012. (in Persian ).ﻓﺎرﺳ
[22] A.Ebrahimpour,Y.Karimi. Thebestmethodstooptimize energy consumption for an educational building in tabriz. Modares Mechanical Engineering, 17(4):91–104, 2012. (in Persian ).ﻓﺎرﺳ
[23] Yao, J. Determining the energy performance of manually controlled solar shades: A stochastic model based cosimulation analysis. Applied Energy, 127:64–80, 2014.
[24] Yao, J. An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Building and Environment, 71:24–32, 2014.
[25] S. Nikoofard, V. I. U. Ian, B. Morrison. Technoeconomic assessmentoftheimpactofwindowshadingretrofitsonthe heating and cooling energy consumption and GHG emissionsoftheCanadianhousingstock. EnergyandBuildings, 2013.
 [26] M. Manzan, R. Padovan, A. Clarich L. Rizzian. Energy and daylighting optimization for an office with fixed and moveable shading devices. Department of engineering and architecture, Trist ,Italy, 2014.
[27] C.Carletti, F. Sciurpi, L. Pierangiol. The Energy upgrading of existing buildings: window and shading device typologiesforenergyefficiencyrefurbishment. sustainability, 6:5354–5377, 2014.
[28] M. Thalfeldt, J. Kurnitski. External shading optimal control macros for 1- and 2-piece automated blinds in European climates. BUILD SIMUL, 8:13–25, 2015.
[29] Z. Lianying, W. Yuan, Z. Jiyuan L. Xing Z. Linhua. Numerical study of effects of wall’s insulation thickness on energy performance for different climatic regions of china. ScienceDirect-Energy Procedia, 75:1290–1298, 2015.
[30] A. Hoła, M. Czarnota. Analysis of the possibilities of improving timber-framed wall thermal insulation with regards to historical buildings. ScienceDirect-Procedia Engineering, 111:311–316, 2015.  
[31] I. Axaopoulosa, P. Axaopoulos, G. Panayiotouc S. KalogiroucJ.Gelegenis. Optimaleconomicthicknessofvarious insulation materials for different orientations of external walls considering the wind characteristics. ScienceDirect, 90:939–952, 2015.
[32] Najim, K. B. External load-bearing walls configuration of residential buildings in Iraq and their thermal performance and dynamic thermal behavior. Energy and Buildings, 84:169–181, 2014.
[33] Kaynakli,O. Parametricinvestigationofoptimumthermal insulationthicknessforexternalwalls. energies,4:913–927, 2011.
[34] Office of the National Regulations Building. National Regulations Building Iran, Office of the National Regulations Building, energy saving in section 19, 2014. (in Persian ).ﻓﺎرﺳ
[35] www.ahwaz.ostan-khz.ir. Accessed june 2015.
[36] www.energyplus.net/weather-region/asia_wmo_ region_2/IRN.
 [37] R. H. Henninger, M. J. Witte. Energyplus Testing with ANSI/ASHRAEStandard140-2001(BESTEST).U.S.Department of Energy, 2004. [38] Energy, U.S.D.o. EnergyPlusTM Documentation, v8.4.0, 2015.