شبیه سازی عددی میکرواحتراق پیش مخلوط متان هوا

نوع مقاله: مقاله علمی ترویجی

نویسندگان

دانشگاه کاشان

چکیده

در سال های اخیر با توجه به گسترش روز افزون کاربرد احتراق در سیستم های میکروالکترومکانیکی جهت تولید نیروی پیشران در ابعاد میکرو، فرآیند احتراق در ابعاد میکرو مورد توجه فراوان قرار گرفته است. با توجه به اینکه بررسی این فرآیند در ابعاد میکرو بصورت تجربی بسیار مشکل می باشد. در کار حاضر جهت درک مناسب از اینگونه فرآیندها از شبیه سازی عددی استفاده شده است. در این تحقیق به شبیه سازی سازی عددی فرآیند احتراق جریان کاملاً آرام و استوکیومتریک پیش اختلاط متان –هوا در یک محفظه ی احتراق دو بعدی در ابعاد میکرو، با استفاده از نرم افزار فلوئنت پرداخته شده‌است. هدف از این مطالعه، بررسی تاثیر اعمال شرایط مرزی لغزشی و پرش دمایی، بر روی میدان احتراق است. ابتدا در شرایط بدون لغزش، اعتبار سنجی صورت گرفته و سپس با اعمال شرایط مرزی لغزشی و پرش دمایی، تاثیر آن بر روی توزیع دما و غلظت گونه های احتراق، بررسی می‌گردد. نتایج نشان می‌دهد، که اعمال این شرایط مرزی، تاثیر محسوسی در احتراق در ابعاد میکرو نداشته و تنها باعث تغییر اندکی(درصد اختلاف توزیع سرعت حداکثر 3/1 درصد و درصد اختلاف توزیع دما حداکثر 3/3 درصد) در مکان تشکیل شعله می‌گردد.

کلیدواژه‌ها

موضوعات


[1] Waitz, Ian A, Gauba, Gautam, and Tzeng, Yang-Sheng. Combustors for micro-gas turbine engines. Journal of Fluids Engineering, 120(1):109–117, 1998.

[2] Chia, Loy Chuan and Feng, Bo. The development of a micropower (micro-thermophotovoltaic) device. Journal of Power Sources, 165(1):455–480, 2007.

[3] Bicen, AF, Tse, DGN, and Whitelaw, JH. Combustion characteristicsofamodelcan-typecombustor. combustion and Flame, 80(2):111–125, 1990.

[4] Adachi, Sadamasa, Iwamoto, Atushi, Hayashi, Shigeru, Yamada, Hideshi, and Kaneko, Shigehiko. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proceedings of the Combustion Institute, 31(2):3131–3138, 2007.

 [5] Sitzki, Lars, Borer, Kevin, Wussow, Steffen, Maruta, Ewald, and Ronney, Paul. Combustion in microscale heatrecirculating burners. in 39th Aerospace Sciences Meeting and Exhibit, p. 1087, 2001.

[6] Aghalayam, P and Vlachos, DG. Roles of thermal and radical quenching in emissions of wall-stabilized hydrogen flames. AIChE journal, 44(9):2025–2034, 1998.

 [7] Ganley, Jason C, Seebauer, EG, and Masel, Richard I. Porousanodicaluminamicroreactorsforproductionofhydrogen from ammonia. AIChE Journal, 50(4):829–834, 2004.

 [8] Maekawa, Masao. Flame quenching by rectangular channels as a function of channel length for methane-air mixture. CombustionScienceandtechnology,11(3-4):141–145, 1975.

[9] Tomlin, Alison S, Pilling, Michael J, Turányi, Tamás, Merkin, John H, and Brindley, John. Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses. Combustion and flame, 91(2):107–130, 1992.

[10] Linan, Amable and Williams, Forman Arthur. Fundamental aspects of combustion. 1993.

[11] Masel, Richard I and Shannon, Mark A. Microcombustor having submillimeter critical dimensions, February 27 2001. US Patent 6,193,501.

[12] Jensen C, Masel R I, Moore G V Shannon M. Burner designs for microcombustion, 2003.

[13] Raimondeau, S, Norton, D, Vlachos, DG, and Masel, RI. Modeling of high-temperature microburners. Proceedings of the Combustion Institute, 29(1):901–907, 2002.

[14] Norton, Dan G and Vlachos, Dionisios G. Combustion characteristics and flame stability at the microscale: a cfd study of premixed methane/air mixtures. Chemical engineering science, 58(21):4871–4882, 2003.

 [15] Norton, Dan G and Vlachos, Dionisios G. A cfd study of propane/air microflame stability. Combustion and Flame, 138(1-2):97–107, 2004.

 [16] Leach, Timothy T and Cadou, Christopher P. The role of structural heat exchange and heat loss in the design of efficientsiliconmicro-combustors. Proceedings of the Combustion Institute, 30(2):2437–2444, 2005.

[17] Kaisare,NSandVlachos,DG. Optimalreactordimensions for homogeneous combustion in small channels. Catalysis Today, 120(1):96–106, 2007. [18] Xu, Bo and Ju, Yiguang. Experimental study of spinning combustion in a mesoscale divergent channel. Proceedings of the Combustion Institute, 31(2):3285–3292, 2007.

[19] Pan, JF, Huang, J, Li, DT, Yang, WM, Tang, WX, and Xue, H. Effects of major parameters on micro-combustion for thermophotovoltaic energy conversion. Applied Thermal Engineering, 27(5-6):1089–1095, 2007.

[20] Yang,WM,Chou,SK,Shu,C,Li,ZW,andXue,H. Experimental study of micro-thermophotovoltaic systems with different combustor configurations. Energy conversion and management, 48(4):1238–1244, 2007.

[21] Li, JunweiandZhong, Beijing. Experimentalinvestigation on heat loss and combustion in methane/oxygen microtube combustor. Applied Thermal Engineering, 28(7):707– 716, 2008.

[22] Akram, Mohammad and Kumar, Sudarshan. Experimental studies on dynamics of methane–air premixed flame in meso-scale diverging channels. Combustion and flame, 158(5):915–924, 2011.

[23] Kumar, Sudarshan. Numerical studies on flame stabilization behavior of premixed methane-air mixtures in diverging mesoscale channels. Combustion Science and Technology, 183(8):779–801, 2011.

[24] Li, ZW, Chou, SK, Shu, C, Xue, H, and Yang, WM. Characteristicsofpremixedflameinmicrocombustorswith different diameters. Applied Thermal Engineering, 25(23):271–281, 2005.

 [25] Akhtar, Saad, Khan, Mohammed N, Kurnia, Jundika C, and Shamim, Tariq. Numerical investigation of h2-air premixed combustion in a curved micro-combustor for thermo-photovoltaic (tpv) applications. Energy Procedia, 75:3060–3065, 2015.

[26] Turkeli-Ramadan, Zerrin, Sharma, Rajnish N, and Raine, Robert R. Two-dimensional simulation of premixed laminar flame at microscale. Chemical Engineering Science, 138:414–431, 2015.

 [27] Miyata, Eriko, Fukushima, Naoya, Naka, Yoshitsugu, Shimura, Masayasu, Tanahashi, Mamoru, and Miyauchi, Toshio. Direct numerical simulation of micro combustion inanarrowcircularchannelwithadetailedkineticmechanism. Proceedings of the Combustion Institute,35(3):3421– 3427, 2015.

 [28] Su, Yang, Song, Jinlin, Chai, Jiale, Cheng, Qiang, Luo, Zixue, Lou, Chun, and Fu, Peifang. Numerical investigation of a novel micro combustor with double-cavity for micro-thermophotovoltaic system. Energy Conversion and Management, 106:173–180, 2015.

[29] Wan, Jianlong, Fan, Aiwu, Liu, Yi, Yao, Hong, Liu, Wei, Gou, Xiaolong, and Zhao, Daiqing. Experimental investigation and numerical analysis on flame stabilization of ch4/air mixture in a mesoscale channel with wall cavities. Combustion and Flame, 162(4):1035–1045, 2015.

 [30] Bucci, Michele A, Robinet, Jean-Christophe, and Chibbaro, Sergio. Global stability analysis of 3d microcombustion model. Combustion and flame, 167:132–148, 2016.

 [31] Jiaqiang, E,Zuo, Wei, Liu, Xueling, Peng, Qingguo, Deng, Yuanwang, and Zhu, Hao. Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustorwithastep. Applied Energy,175:337–345,2016.

[32] Su, Yang, Cheng, Qiang, Song, Jinlin, and Si, Mengting. Numerical study on a multiple-channel micro combustor for a micro-thermophotovoltaic system. Energy Conversion and Management, 120:197–205, 2016.

[33] Westbrook, Charles K and Dryer, Frederick L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion science and technology, 27(1-2):31– 43, 1981.

[34] Williams,FormanA. Overviewofasymptoticsformethane flames. in Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, pp. 68–85. Springer, 1991.